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1 Vorwort / Foreword
Das Weierstraß-Institut für Angewandte Ana-
lysis und Stochastik (WIAS) (Mitglied der
Leibniz-Gemeinschaft) legt hiermit Kollegen,
Förderern und Kooperationspartnern des Insti-
tuts seinen Jahresforschungsbericht 2003 vor.
Der Bericht gibt in seinem ersten Teil Auskunft
über die gemachten Fortschritte und die erziel-
ten Resultate, gegliedert nach Forschungsge-
bieten, Projekten und Einzelthemen. Im zwei-
ten Teil wird ein Überblick über das wissen-
schaftliche Leben am WIAS gegeben.

The Weierstrass Institute for Applied Analy-
sis and Stochastics (WIAS) (member of the
Leibniz Association) herewith presents its An-
nual Scientific Report 2003 to its colleagues,
supporters, and cooperation partners. In its
first part, the report informs about the progress
made and the results obtained in 2003, divided
into research areas, projects, and single topics.
The second part gives a general account of the
scientific life at WIAS.

In wissenschaftlicher Hinsicht war das Jahr
2003 wiederum erfolgreich. Die Arbeiten am
Forschungsprogramm 2001–2003 wurden wei-
tergeführt. Es gelang dem Institut, in Zeiten
knapper werdenden Geldes und wachsender
Konkurrenz seine Stellung als führende Insti-
tution im Bereich der mathematischen Behand-
lung konkreter Problemstellungen aus komple-
xen Anwendungsfeldern nicht nur zu halten,
sondern weiter auszubauen. Dabei konnten we-
sentliche Beiträge sowohl zur Lösung konkreter
Anwendungsprobleme als auch zu innermathe-
matischen Problemstellungen geleistet werden,
und die interne Verflechtung innerhalb des In-
stituts sowie die Anzahl der interdisziplinär
bearbeiteten Aufgabenstellungen aus Industrie,
Wirtschaft und Wissenschaft nahmen weiter zu.

From a scientific point of view, the year 2003
has again been successful. Work on the Re-
search Program 2001–2003 has been contin-
ued. In spite of the growing shortness of money
and a growing competition, WIAS succeeded
in defending and even strengthening its posi-
tion as a leading institution in the mathematical
treatment of concrete problems from complex
fields of applications. Essential contributions to
the solution of both concrete application prob-
lems and purely mathematical problems could
be made. There was an increase in the internal
integration within the institute as well as in the
number of tasks from industry, economy, and
sciences that were treated interdisciplinarily.

Die positive Entwicklung spiegelt sich wider in
der im Vergleich zum Vorjahr wiederum gestei-
gerten Drittmitteleinwerbung, der Anzahl der in
referierten Fachzeitschriften erschienenen Pu-
blikationen und der eingeladenen Vorträge auf
internationalen Tagungen.

The positive development is reflected by the
again increased third-party funds that have
been raised in 2003, compared to last year’s
funds, the number of publications that appeared
in refereed journals, and the number of invited
talks at international conferences.

Besonders augenfällig wird der hohe Stellen-
wert, den die am WIAS geleistete Arbeit in
der Scientific Community hat, wiederum im
Bereich der Berufungen: Im Berichtsjahr 2003
ergingen vier Rufe an Mitarbeiter des Instituts
auf Professuren, davon eine ins Ausland. Ins-

The high rank of WIAS’s research work in
the scientific community becomes again espe-
cially clear in the field of calls: in 2003, four
calls to professorships were received by WIAS
collaborators, including one to a professorship
abroad. Altogether, since the institute’s foun-

5



6 1. VORWORT / FOREWORD

gesamt sind nunmehr seit der Gründung des
Instituts im Jahre 1992 schon 28 Rufe an Mit-
arbeiter/innen des Instituts auf Professuren er-
folgt (davon 15 auf C4-Professuren und acht
auf Professuren im Ausland), eine Bilanz, die
sich bei einer Zahl von derzeit 54 etatisierten
Wissenschaftlern wirklich sehen lassen kann.

dation in 1992, 28 calls have been received
by collaborators of WIAS (including 15 to C4
(full) professorships and eight to professorships
abroad). This is a remarkable output, given a
number of 54 scientists now in our budget.

Die an sich schon intensive Kooperation mit
den mathematischen Institutionen im Raum
Berlin wurde weiter vertieft. Besonderes Au-
genmerk galt weiterhin der Zusammenarbeit
mit den Berliner Hochschulen. Dabei wurden
im Berichtsjahr zwei gemeinsame Berufun-
gen mit der Technischen Universität Berlin er-
folgreich abgeschlossen, nämlich die Berufung
des Leiters der Forschungsgruppe „Nichtlineare
Optimierung und Inverse Probleme“ auf eine
C4-S-Professur für „Numerische nichtlineare
Optimierung“ und die Berufung des Leiters
der Forschungsgruppe „Stochastische Systeme
mit Wechselwirkung“ auf eine C4-S-Professur
„Vernetzte stochastische Systeme“. Insgesamt
sind nunmehr fünf gemeinsame Berufungen
auf C4-S-Professuren mit den Berliner Univer-
sitäten realisiert. Für eine weitere gemeinsame
Berufung, nämlich die des zukünftigen Lei-
ters der Forschungsgruppe „Partielle Differen-
tialgleichungen und Variationsgleichungen“ auf
eine C4-S-Professur für „Partielle Differential-
gleichungen“ an der Humboldt-Universität zu
Berlin, ist inzwischen der Ruf an den Erstplat-
zierten der Berufungsliste ergangen.

The cooperation with the mathematical institu-
tions in Berlin and its environs, having already
been intensive, has been further strengthened.
Our main attention was again directed to the
cooperation with the Berlin universities. In
2003, two joint appointments with the Techni-
cal University of Berlin have been successfully
completed, namely the call for the head of the
research group “Nonlinear Optimization and
Inverse Problems” to a C4 special professor-
ship for “Numerical Nonlinear Optimization”
and the call for the head of the research group
“Interacting Random Systems” to a C4 special
professorship for “Networked Stochastic Sys-
tems”. Now altogether five joint appointments
to C4 special professorships with the Berlin
universities have been concluded. For one fur-
ther joint appointment, this one for the future
head of the research group “Partial Differen-
tial Equations and Variational Equations” to a
C4 special professorship “Partial Differential
Equations” at Humboldt University of Berlin,
meanwhile the candidate placed first in the
ranked list has received the call.

Neben diesen Aktivitäten und neben der Zu-
sammenarbeit mit den Hochschulen durch die
vielfältigen von Mitarbeitern des WIAS abge-
haltenen Lehrveranstaltungen, die Beteiligung
an Sonderforschungsbereichen, Schwerpunkt-
programmen und Graduiertenkollegs der DFG,
war von zentraler Bedeutung die Kooperation
im Rahmen des DFG-Forschungszentrums FZT

Besides these activities and besides the coop-
eration with the universities through manifold
teaching activities by WIAS collaborators, the
participation in DFG Collaborative Research
Centers, Priority Programs, and Graduate Col-
leges, the cooperation in the framework of the
DFG Research Center FZT 86 “Mathematics
for Key Technologies” at the Technical Uni-
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86 „Mathematik für Schlüsseltechnologien“ an
der Technischen Universität Berlin. Das WIAS
engagiert sich in erheblichem Maße finanzi-
ell und personell am Erfolg des Zentrums:
Der Institutsdirektor ist Vorstandsmitglied des
Zentrums, seine beiden Stellvertreter Mitglie-
der des Rates des Zentrums, und Mitarbeiter
des Instituts sind an insgesamt 12 Teilprojek-
ten des Forschungszentrums als Teilprojektlei-
ter beteiligt. Insgesamt acht wissenschaftliche
Mitarbeiter und mehrere studentische Hilfskräf-
te wurden im Jahre 2003 aus Zentrumsmitteln
am WIAS beschäftigt.

versity of Berlin was of central interest. WIAS
is committed to the success of the Center by
providing considerable financial and personal
resources: The Director of WIAS is a member
of the Center’s Executive Board and both his
deputies are members of its Council. WIAS
collaborators participate in the management of
12 subprojects of the Center. Altogether, eight
scientific collaborators and several student as-
sistants were employed by WIAS from Center
funds in 2003.

Neben der wissenschaftlichen Arbeit war je-
doch das zentrale Ereignis des Jahres 2003
die Anfang Juli erfolgte Evaluierung des Insti-
tuts durch den Senat der Leibniz-Gemeinschaft,
die einen erheblichen Aufwand in der Vorbe-
reitung erforderte. Das Ergebnis der Evalu-
ierung war außerordentlich positiv. Zentrales
Statement des Bewertungsberichts der Evaluie-
rungskommission war:

The central event in 2003, in addition to the
scientific work, however, was the institute’s
evaluation, early in July, by the Leibniz As-
sociation’s Senate, that required a considerable
amount of preparatory work. The evaluation’s
result was exceptionally positive. The central
statement in the evaluation report has been:

• „Das WIAS steht heute für erstklassige
Forschung und anwendungsnahe Metho-
denentwicklung auf dem für die Praxis
immer wichtiger werdenden Gebiet der
Angewandten Mathematik. Es ist in der
internationalen mathematischen Wissen-
schaftslandschaft sehr gut positioniert.
Sowohl hinsichtlich seiner Mission als
auch seiner wissenschaftlichen Einzelak-
tivitäten hat das WIAS einen sehr positi-
ven Gesamteindruck hinterlassen“.

• WIAS stands today for excellent research
and application-related method develop-
ment in Applied Mathematics, a field be-
coming more and more relevant in prac-
tice. WIAS is very well positioned in the
mathematical-scientific community. Both
with respect to its mission and to its sep-
arate scientific activities, it gave a very
positive general impression.

Ferner wurde die Arbeit mehrerer Forschungs-
gruppen als „sehr gut“ bezeichnet; einer For-
schungsgruppe wurde sogar bescheinigt, „ex-
zellent“ zu sein. Besonders wichtig in der
gegenwärtigen forschungspolitischen Situation
ist es auch, dass dem WIAS attestiert wur-
de, über „mehrere Alleinstellungsmerkmale“
zu verfügen und mit seiner forschungsstrate-
gischen Ausrichtung „einzigartig positioniert“
zu sein (national und international).

Besides, the work of several research groups
has been judged “very good”, one research
group was even referred to as “excellent”. In
the present scientifico-political situation, it is
also of a special importance that WIAS has
been attested to have “several unique features”
and to be “singularly positioned” (nationally
and internationally) for the strategic orientation
of its research work.
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Die Mitarbeiter des Instituts sehen sich in die-
ser äußerst positiven Einschätzung darin bestä-
tigt, in den vergangenen Jahren hervorragende
Arbeit geleistet zu haben. Gleichzeitig ist dies
ein Ansporn für das gesamte WIAS, den be-
schrittenen Weg konsequent fortzusetzen.

WIAS’s collaborators find themselves con-
firmed by this utterly positive estimation to
have done a very good job in the last years.
At the same time, this is an encouragement for
the whole institute to follow persistently the
chosen path.

Unverändert bleibt es das übergeordnete Ziel
des Instituts, Grundlagenforschung und an-
wendungsorientierte Forschung miteinander zu
verbinden und durch neue wissenschaftliche
Erkenntnisse zur Fortentwicklung innovativer
Technologien beizutragen. Die Erfüllung die-
ser Aufgabe wird angesichts der zunehmen-
den Mittelknappheit in allen Bereichen immer
schwieriger. Bisher hat sich das WIAS erfolg-
reich dem wissenschaftlichen Wettbewerb um
die Fördermittel gestellt und die erfolgten Kür-
zungen durch vermehrte Anstrengungen in der
Drittmitteleinwerbung weitgehend kompensie-
ren können. Allerdings gibt es hierfür eine
Grenze: Eine hinreichende Grundausstattung ist
unerlässlich, damit das Institut auch weiterhin
erfolgreich im wissenschaftlichen Wettbewerb
bestehen kann.

Our primary aim remains unchanged: to join
fundamental research with application-oriented
research, and, by new scientific insights, to
contribute to the advancement of innovative
technologies. The accomplishment of this mis-
sion becomes more and more difficult in view
of the growing shortness of funds in all areas.
Thus far, WIAS has successfully taken up the
challenge of the scientific competition for ad-
ditional funds from support programs and has
been able to compensate for the financial cuts
by an intensified effort in the raising of third-
party funds. But there is a limit to this: A
sufficient basic equipment is imperative for the
institute to remain successful in the scientific
competition.

Wie in den vergangenen Jahren hoffen wir,
dass dieser Bericht möglichst vielen Kollegen
und Förderern aus Industrie, Wirtschaft und
Wissenschaft zur Information dienen und An-
regungen zur Zusammenarbeit geben möge.

As in the last years we hope that as many
colleagues and supporters as possible from in-
dustry, economy, and sciences might find this
report informative and might be encouraged to
start to cooperate with us.

Berlin, im April 2003 / in April 2003

J. Sprekels
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3 Aufgabenstellung und Struktur / Mission and Structure

3.1 Aufgabenstellung / Mission

Das Weierstraß-Institut für Angewandte Ana-
lysis und Stochastik (WIAS) im Forschungs-
verbund Berlin e. V. verfolgt als Institut der
Leibniz-Gemeinschaft (WGL) Forschungszie-
le, die von gesamtstaatlichem Interesse und
überregionaler Bedeutung sind. Entsprechend
den Empfehlungen des Wissenschaftsrats be-
treibt das WIAS projektorientierte Forschun-
gen in Angewandter Mathematik, insbesonde-
re in Angewandter Analysis und Angewandter
Stochastik, mit dem Ziel, zur Lösung kom-
plexer Problemkreise aus Wirtschaft, Wissen-
schaft und Technik beizutragen. Die Herange-
hensweise ist dabei ganzheitlich, d. h. am WI-
AS wird der gesamte Problemlösungsprozess
von der interdisziplinären Modellierung über
die mathematisch-theoretische Behandlung des
Modells bis hin zur konkreten numerischen
Simulation betrieben.

As a member of Leibniz Association (WGL),
the Weierstraß-Institut für Angewandte Anal-
ysis und Stochastik (Weierstrass Institute for
Applied Analysis and Stochastics/WIAS) in
Forschungsverbund Berlin e.V. strives for re-
search results of supraregional and national
interest. Following the recommendations of
the German Science Council, WIAS engages
in project-oriented research in applied math-
ematics, particularly in applied analysis and
applied stochastics, aiming at contributing to
the solution of complex economic, scientific,
and technological problems. WIAS approaches
this aim integrally, pursuing the entire problem-
solving process from the interdisciplinary mod-
eling over the theoretical mathematical analysis
of the model to concrete numerical simulations.

Die Forschungen am WIAS konzentrierten sich
im Berichtsjahr auf die folgenden Schwerpunkt-
themen, in denen das WIAS besondere Kom-
petenz bezüglich Modellierung, Analysis und
Simulation besitzt:

Research at WIAS focused, in the time under
review, on the following main fields, in which
the institute has a special competence in the
modeling, analysis, and simulation.

• Mikro-, Nano- und Optoelektronik,

• Optimierung und Steuerung technischer
Prozesse,

• Phasenübergänge,

• Stochastik in Natur- und Wirtschaftswis-
senschaften,

• Strömungs- und Transportprobleme in
Kontinuen,

• Numerische Methoden der Analysis und
Stochastik.

• Micro-, nano-, and optoelectronics;

• Optimization and control of technologi-
cal processes;

• Phase transitions;

• Stochastics in natural sciences and eco-
nomics;

• Flow and propagation processes in con-
tinua;

• Numerical methods of analysis and
stochastics.

10
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Dabei wurden u. a. mathematische Problem-
stellungen aus den folgenden Bereichen bear-
beitet1:

Among others, mathematical problems from
the following areas have been treated2:

3.1.1 Mikro-, Nano- und Optoelektronik / Micro-, nano-, and optoelectronics

– Mikroelektronische Bauelemente (Tech-
nologie- und Bauelementesimulation von
Halbleiterbauelementen; in FG 1 und
FG 3)

– Simulation von mikroelektronischen
Schaltkreisen und von Mikrowellenschal-
tungen (in FG 3)

– Modellierung und Simulation von Halb-
leiterlasern (in FG 1, FG 2 und FG 3)

– Diffraktive Optik (Simulation und Opti-
mierung optischer Gitter; in FG 4)

– Microelectronic devices (technology and
device simulation of semiconductor de-
vices, in FG 1 and FG 3)

– Simulation of microelectronic circuits
and of microwave circuits (in FG 3)

– Modeling and simulation of semiconduc-
tor lasers (in FG 1, FG 2, and FG 3)

– Diffractive optics (simulation and opti-
mization of optical gratings, in FG 4)

3.1.2 Optimierung und Steuerung technischer Prozesse / Optimization and control of
technological processes

– Simulation und Steuerung chemischer
Anlagen (in FG 2, FG 3 und FG 4)

– Robotik (Optimierung und inverse Mo-
dellierung von Mehrkörpersystemen; in
FG 4)

– Probleme des Optimal Shape Design (in
FG 1)

– Simulation and control of chemical
plants (in FG 2, FG 3, and FG 4)

– Robotics (optimization and inverse mod-
eling of multi-body systems, in FG 4)

– Problems of Optimal Shape Design (in
FG 1)

3.1.3 Phasenübergänge / Phase transitions

– Wärmebehandlung und Schweißverfah-
ren bei Stählen (Modellierung und Simu-
lation; in FG 1)

– Phasenfeldmodelle (Simulation von
Formgedächtnislegierungen, flüssig-fest-
Übergängen und Phasenseparation; in
FG 1, FG 3 und FG 7)

– Heat treatment and welding processes for
steels (modeling and simulation, in FG 1)

– Phase-field models (simulation of shape-
memory alloys, liquid-solid transitions
and phase separation, in FG 1, FG 3, and
FG 7)

1In Klammern sind die Forschungsgruppen (FG) angegeben, in denen das Thema jeweils behandelt wurde.
2The research groups (FG) involved in the respective research are indicated in brackets.



12 3. AUFGABENSTELLUNG UND STRUKTUR / MISSION AND STRUCTURE

– Stochastische Modellierung von Phasen-
übergängen und Spingläsern (in FG 5)

– Stochastic modeling of phase transitions
and spin glasses (in FG 5)

– Verfahren der Züchtung von SiC- und
GaAs-Einkristallen (in FG 1 und FG 7)

– Growth processes of SiC and GaAs sin-
gle crystals (in FG 1 and FG 7)

3.1.4 Stochastik in Natur- und Wirtschaftswissenschaften / Stochastics in natural sciences
and economics

– Stochastische Teilchensysteme und kine-
tische Gleichungen (Modellierung und
Simulation von Koagulationsprozessen
und Gasströmungen; in FG 5, FG 6 und
FG 7)

– Modellierung von Aktien-, Zins- und
Wechselkursen (in FG 5 und FG 6)

– Bewertung von Derivaten, Portfolio-
Management und Risikobewertung (in
FG 6)

– Nichtparametrische statistische Metho-
den (Bildverarbeitung, Finanzmärkte,
Ökonometrie; in FG 6)

– Datenanalyse (Cluster- und
Diskriminanzanalyse, Credit-Scoring; in
FG 6)

– Stochastic particle systems and kinetic
equations (modeling and simulation of
coagulation processes and gas flows, in
FG 5, FG 6, and FG 7)

– Modeling of stock prices, interest rates,
and exchange rates (in FG 5 and FG 6)

– Evaluation of derivatives, portfolio man-
agement, and evaluation of risk (in FG 6)

– Nonparametric statistical methods (image
processing, financial markets, economet-
rics, in FG 6)

– Data analysis (clustering and discrimi-
nant analysis, credit scoring, in FG 6)

3.1.5 Strömungs- und Transportprobleme in Kontinuen / Flow and propagation processes
in continua

– Navier-Stokes-Gleichungen (in FG 3)

– Strömungen und Massenaustausch in po-
rösen Medien (Wasser- und Stofftrans-
port in Böden und in porösen Gestei-
nen, Zweiphasenströmungen und Model-
lierung von Brennstoffzellen; in FG 3
und FG 7)

– Thermomechanik poröser Körper und
granularer Stoffe (Schall- und Stoßwel-
len, Streuung und Beugung; in FG 7)

– Navier-Stokes equations (in FG 3)

– Flows and mass exchange in porous me-
dia (water and materials transport in soils
and porous rocks, two-phase flows, and
modeling of fuel cells, in FG 3 and FG 7)

– Thermomechanics of porous bodies and
of granular materials (sound waves,
shock waves, dispersion and diffraction,
in FG 7)
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3.1.6 Numerische Methoden der Analysis und Stochastik / Numerical methods of analysis
and stochastics

– Numerische Lösung partieller Diffe-
rentialgleichungen (Finite-Volumen- und
Finite-Element-Methoden, Vorkonditio-
nierer, Gittergeneration, Fehlerschätzer
und Adaptivität; in allen Forschungs-
gruppen, insbesondere in FG 3)

– Numerical solution of partial differen-
tial equations (finite-volume and finite-
element methods, preconditioners, grid
generation, error estimators, and adaptiv-
ity, in all research groups, especially in
FG 3)

– Numerik von Algebro-Differentialglei-
chungen (in FG 3)

– Numerik von Integralgleichungen (Rand-
elementmethoden, Waveletalgorithmen;
in FG 4)

– Verfahren der nichtlinearen Optimierung
(in FG 1 und FG 4)

– Stochastische Numerik (in FG 6)

– Monte-Carlo-Verfahren (kinetische Glei-
chungen, Koagulationsdynamik, Teil-
chensysteme; in FG 5, FG 6 und FG 7)

– Weiterentwicklung von Softwarepa-
keten des WIAS (WIAS-TeSCA,
ClusCorr98, DiPoG, COG,
LDSL-tool, pdelib und andere,
siehe S. 255; in FG 1, FG 2, FG 3, FG 4
und FG 6)

– Numerics of differential–algebraic equa-
tions (in FG 3)

– Numerics of integral equations
(boundary-element methods, wavelet
algorithms, in FG 4)

– Nonlinear optimization techniques (in
FG 1 and FG 4)

– Stochastic numerics (in FG 6)

– Monte-Carlo processes (kinetic equa-
tions, coagulation dynamics, particle sys-
tems, in FG 5, FG 6, and FG 7)

– Further development of WIAS
software packages (WIAS-TeSCA,
ClusCorr98, DiPoG, COG,
LDSL-tool, pdelib and others, see
page 255; in FG 1, FG 2, FG 3, FG 4,
and FG 6)

3.2 Organisatorische Struktur / Organizational Structure

Zur Erfüllung seiner wissenschaftlichen Auf-
gabenstellung war das WIAS im Berichtsjahr
2003 nach fachspezifischen Gesichtspunkten
in sieben Forschungsgruppen gegliedert; hinzu
kamen die wissenschaftlich-technischen Diens-
te. Im Folgenden sind die Aufgaben dieser
Abteilungen angegeben.

In order to fulfil its scientific mission WIAS has
been divided, according to the mathematical
fields treated there, into seven research groups
and the scientific technical services. Please find
in the following the tasks of these departments.
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3.2.1 Forschungsgruppe Partielle Differentialgleichungen und Variationsgleichungen /
Research Group Partial Differential Equations and Variational Equations

Die Arbeiten der Forschungsgruppe befassten
sich mit der qualitativen Analyse von Sys-
temen nichtlinearer partieller Differentialglei-
chungen und, darauf aufbauend, mit der Ent-
wicklung von Verfahren zu ihrer numerischen
Lösung. Die betrachteten Gleichungen mo-
dellieren komplexe Phänomene und Prozesse
insbesondere aus Physik, Chemie, Materialwis-
senschaften und Technik und bilden die Grund-
lage zu deren numerischer Simulation.
Die Forschungsschwerpunkte der Forschungs-
gruppe lagen im Jahr 2003 auf den Gebieten

• Stoff-, Ladungs- und Energietransport
in heterogenen Halbleiterstrukturen,

• Modellierung optoelektronischer Bau-
elemente unter Einbeziehung von
Quantisierungseffekten,

• Phasenfeldmodelle, Züchtungssimula-
tion und Hysterese-Phänomene bei
Phasenübergängen.

The group has been working on the qualita-
tive analysis of systems of nonlinear partial
differential equations and, on this basis, on the
development of methods for their numerical
solution. The equations under study model
complex phenomena and processes particularly
from physics, chemistry, materials science, and
technology and form the basis for their numer-
ical simulation.

In 2003, the group’s research work focused on
the areas

• Materials, charge, and energy transport in
heterogeneous semiconductor structures;

• Modeling of opto-electronical compo-
nents including quantization effects;

• Phase-field models, growth simulation,
and hysteresis phenomena in phase tran-
sitions.

3.2.2 Forschungsgruppe Laserdynamik / Research Group Laser Dynamics

Die Arbeiten dieser Forschungsgruppe befass-
ten sich mit der Modellierung, der qualitativen
Analyse, der numerischen Untersuchung und
der Steuerung dynamischer Systeme, die Pro-
zesse in der Optoelektronik, in der Reaktions-
kinetik und in der Biochemie beschreiben. Das
zentrale Forschungsthema der Gruppe war die

• Nichtlineare Dynamik von Mehrsektions-
Halbleiterlasern.

The research of this group was concerned
with modeling, quantitative analysis, numer-
ical study, and control of dynamical systems
describing processes in opto-electronics, in re-
action kinetics and in biochemistry. The main
topic of the group was the

• Nonlinear dynamics of multisection
semiconductor lasers.

3.2.3 Forschungsgruppe Numerische Mathematik und Wissenschaftliches Rechnen / Re-
search Group Numerical Mathematics and Scientific Computing

Die mathematische Modellierung naturwissen-
schaftlicher und technologischer Vorgänge er-
fordert die effiziente numerische Lösung von

The mathematical modeling of scientific and
technological processes requires the efficient
numerical solution of systems of nonlinear or-
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Systemen nichtlinearer gewöhnlicher und parti-
eller Differentialgleichungen sowie von großen
Systemen von Algebro-Differentialgleichun-
gen. Die Hauptaufgabe der Forschungsgrup-
pe bestand in der Entwicklung, theoretischen
Begründung und Implementierung numerischer
Methoden zur Lösung solcher Systeme. Die
Untersuchungen konzentrierten sich auf die
Themenkreise

• Numerische Verfahren und Software-
komponenten für die Lösung von Sys-
temen partieller Differentialgleichungen
(insbesondere in der Mikro-, Nano- und
Optoelektronik, bei Phasenübergängen
und bei Strömungs- und Transportvor-
gängen),

• Simulation von Höchstfrequenzschaltun-
gen,

• Dynamische Simulation chemischer Pro-
zesse.

dinary and partial differential equations as well
as of large systems of differential–algebraic
equations. The main task of the research group
was the development, the theoretical substan-
tiation and the implementation of numerical
methods to solve such systems. The studies
concentrated upon the topics

• Numerical methods and software com-
ponents for the solution of systems of
partial differential equations (particularly
in micro-, nano- and optoelectronics, for
phase transitions and for flow and prop-
agation processes);

• Simulation of hyperfrequency circuits;

• Dynamical simulation of chemical pro-
cesses.

3.2.4 Forschungsgruppe Nichtlineare Optimierung und Inverse Probleme / Research
Group Nonlinear Optimization and Inverse Problems

Die Arbeiten dieser Forschungsgruppe befass-
ten sich mit der theoretischen Analyse, Ent-
wicklung und Implementierung numerischer
Methoden für große Probleme der Optimie-
rung und Inversen Modellierung. Die Themen-
schwerpunkte lagen in den Bereichen

• Modellierung und optimales Design dif-
fraktiver Strukturen der Mikrooptik,

• Nichtlineare und stochastische Optimie-
rung in der Verfahrenstechnik,

• Inverse Probleme der Elektromagnetik
und Optik.

This research group was occupied with the the-
oretical analysis, development, and implemen-
tation of numerical methods for large problems
originating from the fields of optimization and
inverse modeling. The main areas of research
were

• Modeling and optimal design of diffrac-
tive structures in micro-optics;

• Nonlinear and stochastic optimization in
process engineering;

• Inverse problems of electromagnetics and
optics.
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3.2.5 Forschungsgruppe Stochastische Systeme mit Wechselwirkung / Research Group
Interacting Random Systems

Die mathematische Analyse sehr großer Sys-
teme und Strukturen mit wechselwirkenden
Komponenten ist in zahlreichen Bereichen
der Naturwissenschaften und in vielen techni-
schen Anwendungen von Bedeutung. Die For-
schungsgruppe befasste sich in diesem Zusam-
menhang im Berichtsjahr mit Fragestellungen
aus den Gebieten

• Gleichgewicht und Dynamik von
ungeordneten Systemen,

• Katalytische Verzweigungsstrukturen
und wechselwirkende Diffusionen,

• Stochastische Teilchensysteme und
kinetische Gleichungen.

The mathematical analysis of very large sys-
tems and structures with interacting compo-
nents is important for various areas of the
natural sciences and for many technical appli-
cations. In the year under review, the research
group was concerned with problems from the
following areas

• Equilibrium states and dynamics of dis-
ordered systems;

• Catalytic branching processes and inter-
active diffusions;

• Stochastic particle systems and kinetic
equations.

3.2.6 Forschungsgruppe Stochastische Algorithmen und Nichtparametrische Statistik /
Research Group Stochastic Algorithms and Nonparametric Statistics

Die Forschungsgruppe befasste sich mit Arbei-
ten zur Angewandten Stochastik und Finanz-
mathematik. Die Schwerpunkte lagen dabei auf
den Bereichen

• Risikomessung, Bewertung und Simula-
tion von Zinsderivaten sowie Portfolio-
Optimierung,

• Stochastische Algorithmen und Turbu-
lenztheorie,

• Nichtparametrische statistische Metho-
den der Bildverarbeitung und der Öko-
nometrie, Cluster- und Diskriminanzana-
lyse.

The research group worked on problems from
Applied Stochastics and Financial Mathemat-
ics. The main topics came from the areas

• Risk evaluation, interest rate modeling,
calibration and pricing of non-standard
derivatives, and portfolio optimization;

• Stochastic algorithms and turbulence
modeling;

• Nonparametric statistical methods in im-
age processing and econometrics, clus-
tering and discriminant analysis.
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3.2.7 Forschungsgruppe Kontinuumsmechanik / Research Group Continuum Mechanics

Die Arbeiten dieser Forschungsgruppe befass-
ten sich im Berichtszeitraum mit speziellen
kontinuumsmechanischen und thermodynami-
schen Fragestellungen, die bei konkreten An-
wendungsproblemen aus Naturwissenschaften
und Technik auftreten. Die Arbeitsschwerpunk-
te lagen dabei in den Bereichen

The research group concentrated its work in
the year under review on specific problems of
continuum mechanics and thermodynamics that
appeared in concrete applications in sciences
and technology. The main areas of research
were

• Wellenausbreitung und Massenaustausch
in porösen Medien,

• Mikro-Makro-Übergänge.

• Wave propagation and mass exchange in
porous media;

• Micro-macro transitions.

3.2.8 Wissenschaftlich-technische Dienste / Scientific Technical Services

Zur Versorgung der Forschungsgruppen mit
Fachliteratur und Fachinformationen betreibt
das WIAS eine wissenschaftliche Bibliothek,
die den Charakter einer Spezialbibliothek hat,
d. h. sie stellt aus eigenen Beständen und
durch Mitnutzung fremder Bestände die Litera-
tur für die wissenschaftliche Arbeit bereit. Dies
geschieht in enger Zusammenarbeit mit der
Fachinformation. Gehalten werden Zeitschrif-
ten, Serien, Monographien, Preprints, Reports
und CD-ROMs.

In order to provide the research groups with
specialized literature and with science infor-
mation, WIAS has a Scientific Library with
the character of a specialized library, making
available the literature for the scientific work
from its own stock or by using the stocks of
other institutions, in close cooperation with the
Science Information. The library offers jour-
nals, series, monographs, preprints, reports,
and CD-ROMs.

Die Gruppe Rechentechnik ist zuständig für
die Versorgung des Instituts mit den nötigen
Kapazitäten im Bereich der EDV. Ihr obliegt
neben der Hardware- und Software-Wartung
das gesamte Systemmanagement und ferner die
Betreuung des hausinternen Rechnernetzes.

The Computer Department is responsible for
supplying the institute with the necessary elec-
tronical data processing facilities. Apart from
maintaining the institute’s hardware and soft-
ware, the department is in charge of the man-
agement of the entire computer system and of
the internal computer network.

Die Verwaltung erledigt die für die Arbeits-
fähigkeit des Instituts notwendigen verwal-
tungstechnischen und organisatorischen Auf-
gaben. Das WIAS ist mit derzeit sieben weite-
ren naturwissenschaftlichen Forschungsinstitu-
ten im Forschungsverbund Berlin e. V. (FVB)
rechtlich zusammengeschlossen. Administrati-
ve Aufgaben werden im FVB zwecks einer ef-
fizienten einheitlichen Verwaltungsleistung ar-

The Administration attends to the administra-
tive and organizational tasks thus enabling the
institute to fulfil its mission. WIAS has legally
joined forces with seven more scientific re-
search institutes in Forschungsverbund Berlin
e.V. (FVB). Aiming at an efficient homoge-
neous administrative performance within FVB,
the FVB’s Common Administration and the in-
stitutes’ administrations share the administra-
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beitsteilig von der Gemeinsamen Verwaltung
des FVB und den Institutsverwaltungen er-
bracht. Dem Geschäftsführer des FVB obliegt
die Führung der Verwaltungsgeschäfte.

tive tasks. The Manager of FVB is in charge
of the administrative business.



4 Research Results and Applied Projects

4.1 Research Group Partial Differential Equations and Variational Equa-
tions

4.1.1 Overview

Im Einklang mit dem WIAS-Forschungspro-
gramm hat die Forschungsgruppe ihre Arbeiten
zur mathematischen Modellierung und Analy-
se von mikro- und optoelektronischen Bauele-
menten sowie von Phasenumwandlungen fort-
gesetzt. Ihre analytischen Arbeiten reichen von
grundlegenden Untersuchungen zur Existenz,
Einzigkeit und dem qualitativen Verhalten von
Lösungen der Modellgleichungen über die Be-
gründung, Implementierung und praktische Er-
probung von Näherungsverfahren bis zur In-
stallation von Lösungsalgorithmen bei Koope-
rationspartnern.

According to the WIAS research program the
research group has continued its work in math-
ematical modeling and analysis of micro- and
optoelectronic devices and phase transitions.
The analytical work covers basic investiga-
tions on existence, uniqueness, and qualitative
behavior of solutions to the model equations,
foundation, implementation, and practical test-
ing of approximative procedures up to the im-
plemention of solution algorithms for coopera-
tion partners.

Die Forschungsgruppe ist am DFG-
Forschungszentrum „Mathematik für Schlüs-
seltechnologien“ mit folgenden Projekten be-
teiligt:

The research group takes part in the DFG
Research Center “Mathematics for Key Tech-
nologies” with the projects:

• Formoptimierung und Kontrolle ge-
krümmter mechanischer Strukturen,

• Optimale Steuerung der Sublimations-
Züchtung von SiC-Einkristallen,

• Quantenmechanische und makroskopi-
sche Modelle optoelektronischer Bauele-
mente.

• Shape optimization and control of curved
mechanical structures;

• Optimal control of sublimation growth of
SiC bulk single crystals;

• Quantum mechanical and macroscopic
models for optoelectronic devices.

Durch Drittmittel werden auch weitere Arbei-
ten der Forschungsgruppe finanziert. Dazu ge-
hören die im Rahmen des BMBF-Programms
„Neue Mathematische Methoden in Industrie
und Dienstleistungen“ geförderten Projekte:

Moreover, further research work of the group
has been funded from external sources:
The following projects have been supported
by the BMBF Program “New Mathematical
Methods in Industry and Services”.

• Optische Sensoren,

• Numerische Simulation und Optimie-
rung der Züchtung von SiC-Einkristallen
durch Sublimation aus der Gasphase.

• Optical sensors;

• Numerical simulation and optimization
of SiC single crystal growth by sublima-
tion from the gas phase.

20
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Die DFG unterstützte die Forschungsprojekte:

• Multiskalenmodellierung thermomecha-
nischer Körper,

• Enveloppenfunktionsapproximation für
elektronische Zustände in Halbleiter-
Nanostrukturen,

• Hysterese-Operatoren in Phasenfeld-
Gleichungen,

• Kopplung von van Roosbroeck- und
Schrödinger-Poisson-Systemen mit La-
dungsträgeraustausch,

• Physikalische Modellierung und numeri-
sche Simulation von Strom- und Wärme-
transport bei hoher Trägerinjektion und
hohen Temperaturen,

• Analytische und numerische Untersu-
chungen zur Strukturbildung in Halblei-
tern.

The DFG has sponsored the research projects

• Multi-scale modeling of thermomechani-
cal bodies;

• Envelope function approximation for
electronic states in semiconductor nano-
structures;

• Hysteresis operators in phase-field equa-
tions;

• Coupling between van Roosbroeck and
Schrödinger-Poisson systems including
exchange of carriers;

• Physical modeling and numerical simula-
tion of current and heat transport at high
carrier injection and high temperatures;

• Analytical and numerical investigations
on structure formation in semiconduc-
tors.

Von der Industrie finanziert wurde das Projekt:

• WIAS-TeSCA-Simulationen von Laser-
dioden.

The project

• WIAS-TeSCA simulations of laser di-
odes

has been supported by industrial funds.

Vom Projekt Terabit Optics Berlin wurde das
Thema

The project Terabit Optics Berlin has funded
the theme

• Simulation der Pulsausbreitung in nicht-
linearen optischen Fasern

finanziert.

• Simulation of pulse propagation in non-
linear optical fibers.
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4.1.2 Projects

Simulation of pulse propagation in nonlinear optical fibers

Collaborators: U. Bandelow, A. Demircan, M. Kesting

Cooperation with: Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut (HHI),
Berlin

Supported by: Terabit Optics Berlin (project B4)

Wave propagation in dispersive nonlinear media has become a topic of intense research
activities, in part stimulated by its potential application to optical fiber communication systems.
Propagation of optical pulses in monomode optical fibers is mainly influenced by the group
velocity dispersion and the refractive index nonlinearity. The propagation of sub-picosecond
optical pulses is governed by a generalized nonlinear Schrödinger equation (NLSE) (1), which
can be derived from the underlying Maxwell equations within the slowly varying envelope
approximation (see [1]). This means that the pulse envelope A(z, t) modulating the underlying
carrier wave exp[i(k0z−ω0t)] is assumed to be slowly varying in time and space. The pulse
width has to be much longer than the carrier oscillation period and the spectral content of the
field has to be narrower than the carrier frequency ω0 itself. This is satisfied for optical pulses
with widths down to 10fs.
The general form of the NLSE for the complex envelope A(z,τ) of a pulse is given by

∂A
∂z

= − i
2

β2
∂2A
∂τ2 +

1
6

β3
∂3A
∂τ3 +

i
24

β4
∂4A
∂τ4 −

1
2

αA

+iγ|A|2A−a1
∂
∂τ

(|A|2A
)− ia2A

∂
∂τ

(|A|2) , (1)

where the initial value problem A(0,τ) = f (τ) along z within a retarded time frame τ = t−z/vg

has to be solved. The linear terms on the right-hand side of Eq. (1) are the group velocity
dispersion (GVD), namely second-order (SOD), third-order (TOD) and fourth-order dispersion
(FOD) and the attenuation term corresponding to the fiber loss α. The main contribution to
the group velocity dispersion is represented by the parameter β2, which leads in general to a
broadening of the pulse shape. TOD and FOD are higher-order effects originating from the
wavelength dependence of the group velocity dispersion. These dispersive effects can distort
ultrashort optical pulses in the linear as well as in nonlinear regimes. Another important fiber
parameter is the measure of power loss during the transmission of optical signals inside the
fiber, given by the attenuation constant α.
The first nonlinear term represents the self-phase modulation (SPM), which results from the
intensity dependence of the refractive index. It is responsible for a large variety of phenomena,
such as spectral broadening or optical solitons. The term proportional to a1 results from the
intensity dependence of the group velocity and causes self-steepening and shock formation at
the pulse edge. The last term considers the intrapulse Raman scattering and originates from
the delayed response, which causes a self-frequency shift. a2 = γTR, where TR is related to the
slope of the Raman gain. The intrapulse Raman scattering becomes a dominant perturbation for
ultrashort pulses and is one of the most important limitations for ultrashort pulse propagation in
optical fibers.
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In [1] we have derived the NLSE (1) from the Maxwell equations in a non-standard way,
showing that the neglect of the 2nd derivative with respect to z is no approximation as often
claimed in the literature. In general a numerical approach is needed for an investigation
of the generalized NLSE. For the numerical solution we have developed a code based on a
standard dealiased pseudospectral method with a Runge-Kutta integration scheme ([1]). This
scheme differs from the most commonly used split-step Fourier method and guarantees a
higher accuracy, because no further approximations to (1) are used. Using our code we
have investigated the impact of the various terms in (1) separately as well as their interplay,
where we could reproduce previous analytical as well as experimental data ([1]). As the most
prominent application we have studied the propagation of optical solitons. As an example the
temporal evolution of a third-order soliton over one soliton period is drawn in Figure 1 (left).
Perturbations caused by self-steepening and intrapulse Raman scattering break the degeneracy
of solitons. The higher-order solitons decompose then into their constituents, which propagate
at different speed. In the case of the intrapulse Raman scattering the low-intensity pulse is
advanced, Figure 1 (right), whereas in the case of self-steepening both pulses are delayed.
Moreover, we have investigated the phenomenon of supercontinuum (SC) generation, where
ultrabroad optical spectra are generated during the propagation of femto- or high-power
picosecond pulses through dispersive nonlinear media ([2]). We have demonstrated that the
primary mechanism for SC generation is the modulation instability (MI), accompanied by
four-wave mixing. Higher-order effects, such as the self-steepening effect and the Raman effect
were shown to be of minor influence on the generation of broad spectra. Raman scattering
affects mainly the shape of the spectra. Because higher-order effects are not a prerequisite
for the generation of SC, it is not restricted only to ultrashort sub-picosecond pulses. The MI
enhances when higher-order dispersive terms are present, such that it can appear also in the
normal dispersion regime (β2 > 0), if the fourth-order dispersion coefficient β4 is negative.

Fig. 1: Spatio-temporal evolution of a 3rd-order soliton in an optical fiber (left) and of a
soliton decay induced by Raman scattering (right)

References

1. U. BANDELOW, A. DEMIRCAN, M. KESTING, Simulation of pulse propagation in
nonlinear optical fibers, WIAS Report no. 23, 2003.

2. A. DEMIRCAN, U. BANDELOW, Supercontinuum generation by the modulation instabil-
ity, WIAS Preprint no. 881, 2003.

http://www.wias-berlin.de/publications/reports/23.html
http://www.wias-berlin.de/publications/preprints/881.html


24 4. RESEARCH RESULTS AND APPLIED PROJECTS

WIAS-TeSCA simulations of laser diodes

Collaborators: U. Bandelow, H. Gajewski, A. Glitzky, R. Hünlich

Cooperation with: F. Heinrichsdorff, N. Kirchstädter (LUMICS GmbH Berlin)

Supported by: LUMICS GmbH Berlin

The static and dynamic performance of laser diodes is analyzed on the basis of different mod-
els. The device simulator WIAS-TeSCA, [3], uses two-dimensional models in the transverse

Fig. 1: Schematic transverse cross section of a ridge
waveguide semiconductor laser diode

cross section combined with rate
equations in the longitudinal di-
rection. Numerical solutions of
these equations allow for an ex-
ploration of a wide spectrum of
lasing effects.
Figure 1 shows a schematic
transverse cross section of a
GaAs-based high-power laser
diode. The colors indicate dif-
ferent materials, the lines repre-
sent the intensity distribution of
two optical modes.
The underlying model equations
for the relevant electronic, ther-
modynamic, and optical phe-
nomena form a system of non-
linear partial differential and or-

dinary differential equations. The electronic processes are described by continuity equations for
electrons and holes, and a Poisson equation for the electrostatic potential (drift-diffusion model).
Thermodynamic behavior is modeled by a heat flow equation for the device temperature (or
equivalently by balance equations for the density of the entropy or the internal energy), [1]. Fi-
nally, Helmholtz equations for different modes of the transverse optical field and corresponding
photon balance equations in longitudinal direction characterize the optical behavior, [2].
In this project we used our simulation tool WIAS-TeSCA to calculate stationary characteristics
for laser diodes of the company LUMICS GmbH. For this purpose we solved the stationary
equations to obtain IU characteristics and PI characteristics. To give hints for the development
of new lasing structures we varied in our simulations the geometry of the device, the doping
and the composition of the material of relevant layers in the active zone, especially the number
of quantum wells.
Important parameters for laser operation are derived from the PI characteristics (see left upper
picture in Figure 2). Relevant properties are, firstly, the threshold current which is the minimum
injection current that is required for lasing to occur and, secondly, the differential quantum
efficiency which means the slope of the characteristics near threshold. These parameters depend
strongly upon the temperature in the active zone of the laser which has to be calculated, too.
Figure 2 illustrates simulation results for a test structure for which the half transverse cross
section is given in the middle of the last line of pictures. The left upper picture shows the PI
characteristics. Here the second optical mode does not give a relevant contribution to the optical
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output power. The right upper picture contains the temperature profile on the half transverse
cross section. The middle upper curve represents the optical gain along the quantum well. Here
already the saturation of gain under the ridge can be observed. The left lower diagram contains
the densities of electrons and holes in a cross section along the y-axis of the adjacent picture.
The right lower picture gives the electrostatic potential (black), the position of the valence band
and of the conduction band (green and red), and the quasi-Fermi potentials of electrons and
holes (blue and orange) along the same cross section.
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Fig. 2: WIAS-TeSCA simulation of a ridge waveguide laser diode
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Thermodynamics-based modeling of semiconductor lasers

Collaborators: U. Bandelow, H. Gajewski, R. Hünlich

Cooperation with: H. Wenzel (Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH)
Berlin)

In modern semiconductor devices such as high power transistors or lasers, thermal effects
caused by strong electric and optical fields and by strong recombination play an important role
and have to be included in the mathematical models. Indeed, there is a large variety of energy
models for semiconductor devices. Typically, these models base on the usual state equations and
continuity equations for the carrier densities, and on the balance of the total energy expressed
by the equation

∂tu+∇ ju =−γ (1)

for the density u and the current density ju of this total energy, where γ counts for the
radiation which is emitted from the device. Furthermore, differential relations for u and general
thermodynamic relations for ju are used to transform the energy balance equation (1) into a
heat flow equation

ch∂tT−∇ · (κL∇T) = H, (2)

where ch is the heat capacity and κL the heat conductivity. While the heat flow equation (2)
with the description of the source term H is well established, the discussion about its relation
to the conservation law of energy is still ongoing.
In our model, the transport of electrons and holes is ruled by the drift-diffusion equations

−∇(ε∇ϕ) = C+ p−n , (3)

∂tn−∇ · jn =−R , ∂t p+∇ · jp =−R (4)

for the densities of electrons n and holes p, and the electrostatic potential ϕ in the transverse
cross section Ω of the laser. The recombination rate R in (4) involves all non-radiative and
radiative recombination processes. The current densities jn and jp are driven by the gradients of
the quasi-Fermi potentials fn and fp, which are linked with the carrier concentrations by means
of Fermi-Dirac statistics:

n = NcF1/2

(
ϕ− fn−ec

T

)
, p = NvF1/2

(
ev + fp−ϕ

T

)
. (5)

The optical field distribution χ(r) within Ω is governed by the waveguide equation

[
∇2 +

ω2

c2 εopt(ω,r)−β2
]

χ(r) = 0 (6)

where the optical response function εopt(ω,r) contains the refractive index and the material
gain, which depends on almost all properties of the device and its operating state, in particular
on n, p, and T. The respective (complex) eigenvalue β readily counts the number Ns of photons
in the laser by a corresponding photon rate equation

Ṅs = vg(2ℑmβ−α0−αm)Ns+ rsp. (7)
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The field intensity Ns · |χ(r)|2 times the material gain enters the radiative recombination rate in
R in (4), which self-consistently completes our model ([1]). Based on an expression for the
density of the free energy

f =
ε
2
|∇ϕ|2 +cLT(1− logT)+urad−Tsrad

+n[T(log
n
Nc
−1)+ec]+ p[T(log

p
Nv
−1)−ev], (8)

we extended (3)–(7) to a thermodynamics-based system (2)–(7) of evolution equations for
semiconductor lasers in a deductive way. Here, we only apply first principles like the entropy
maximum principle and the principle of partial local equilibrium as well as the Onsager
symmetry relations ([2]). In particular we could show that the heat source term H in (2) is

H = T∇Pn · jn−T∇Pp · jp +T∇ · (jn− jp)
−jn · (∇ fn−Pn∇T)− jp · (∇ fp +Pp∇T)
+(un +up)R−∂turad− γ, (9)

with the thermoelectric powers Pn, Pp, and the energy density of the optical field urad =h̄ω|χ|2Ns.
The current densities jn and jp are now driven by the gradients of the temperature T, too.
Moreover, a continuity equation for the entropy density s

∂s
∂t

+∇ · js = d/T, (10)

with the entropy current density js could be derived. The dissipation rate d

d =
κL

T
|∇T|2 +σn|∇ fn−Pn∇T|2 +σp|∇ fp +Pp∇T|2

+σnp|∇( fn− fp)− (Pn +Pp)∇T|2 +( fp− fn)R− γ (11)

appears to be always positive for a device which is isolated from the outside world (γ = 0).
Therefore, by partial integration of (10) and supposing no-flux boundary conditions, and γ = 0,
it follows, according to the second law of thermodynamics,

dS
dt

=
Z

Ω

ds
dt

dΩ =
Z

Ω

d
T

dΩ≥ 0 . (12)

In conclusion, as a feature, we are able to prove the thermodynamic correctness of our model
in view of the second law of thermodynamics (12).
The complete energy transport model has been implemented in WIAS-TeSCA ([3]), a numerical
code for the simulation of semiconductor devices. On this base, we have demonstrated the
simulation of long-wavelength edge-emitting quantum well lasers, with a special focus on the
self-heating of the device and the modulation response ([2]).
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A quantum transmitting Schrödinger-Poisson system

Collaborators: M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg

Cooperation with: A. Jüngel (Johannes Gutenberg-Universität Mainz), P. Degond, N. Ben Ab-
dallah (Université Paul Sabatier, Toulouse, France), V.A. Zagrebnov (Université de la Méditer-
ranée, Aix-Marseille II and Centre de Physique Théorique, France), P. Exner (Academy of
Sciences of the Czech Republic, Prague)

Supported by: DFG: DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (Re-
search Center “Mathematics for Key Technologies”), project D4; “Kopplung von van Roosbroeck-
und Schrödinger-Poisson-Systemen mit Ladungsträgeraustausch” (Coupling between van Roos-
broeck and Schrödinger-Poisson systems with carrier exchange); DAAD (PROCOPE): “Numer-
ics of hybrid models for quantum semiconductors”

This project is part of a long-term investigation of quantum mechanical models for semicon-
ductor nanostructures, cf. [2, 9, 10, 11, 12, 13, 14], and their embedding into macroscopic
models, like drift-diffusion and energy models, cf. [15] and p. 26, for semiconductor devices,
in particular optoelectronic ones, cf. [1, 3] and pp. 22, 24.
We investigate, from a mathematical point of view, a basic quantum mechanical model for the
transport of electrons and holes in a semiconductor device. More precisely, our subject is the
distribution of electrons and holes in a device between two reservoirs within a self-consistent
electrical field, thereby taking into account quantum phenomena such as tunneling and the
quantization of energy levels in a quantum well. These very quantum effects are the active
principle of many nanoelectronic devices: quantum well lasers, resonant tunneling diodes et
cetera, cf., e.g., [17]. We look for stationary states of a quasi-two-dimensional electron-hole gas
in a semiconductor heterostructure which is translationally invariant in these two dimensions.
Thus, neglecting any magnetic field induced by the carrier currents, we are dealing with an
essentially one-dimensional physical system. The transport model for a single band, electrons
or holes, in a given spatially varying potential v is as follows: The potential v as well as the
material parameters of the physical system are constant outside a fixed interval (a,b), cf. [7,
16]. The possible wave functions are given by the generalized solutions of

Kvψk = λ(k)ψk

where

Kv =−h̄2

2
d
dx

1
m

d
dx

+v (1)

is the single-particle effective-mass Hamiltonian in Ben-Daniel-Duke form, h̄ is the reduced
Planck constant, m= m(x) > 0 is the spatially varying effective mass of the particle species
under consideration, and λ = λ(k) is a dispersion relation, e.g.,

λ(k) =





h̄2k2

2ma
+va for k > 0,

h̄2k2

2mb
+vb for k < 0;

ma, mb are the effective masses, and va, vb are the potentials in the asymptotic regions x< a and
x > b, respectively. If there are no bounded states, then the particle density u is a composition
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of the wave functions ψk weighted by values of a distribution function f :

u(x) = c
Z ∞

0
dk f(λ(k)− εa)|ψk(x)|2 +c

Z 0

−∞
dk f(λ(k)− εb)|ψk(x)|2, x∈ (a,b). (2)

εa and εb is the quasi-Fermi potential of the reservoir in the asymptotic region x < a and x > b,
respectively, and c is the two-dimensional density of states. The distribution function is

f (ξ) =





exp
(
− ξ

kBT

)
for Boltzmann statistics,

ln
(

1+ exp(− ξ
kBT )

)
for Fermi-Dirac statistics,

where T is the temperature and kB Boltzmann’s constant. (2) can be written in the following
way: Let ρ̂ be the multiplication operator on L2(R) induced by the function

ρ(k) =

{
c f(λ(k)− εa) for k > 0,

c f(λ(k)− εb) for k < 0,
(3)

and let Fv : L2(R)→ L2(R) be the Fourier transform which diagonalizes the operator Kv on
L2(R), that means FvKvF ∗

v = λ̂, where λ̂ is the maximal multiplication operator induced by the
dispersion relation λ = λ(k). Then the operator

ρ(v) = F ∗
v ρ̂Fv (4)

is a steady-state, that means a self-adjoint, positive operator on the Hilbert space L2(R) which
commutes with Kv. Moreover, any steady state can be expressed in the form (4) by means of
a function ρ = ρ(k). The particle density u, defined by (2), is the Radon-Nikodým derivative
of the (Lebesgue) absolutely continuous measure (a,b)⊃ ω 7→ tr

(
ρ(v)M(χω)

)
(M(χω) denotes

the multiplication operator induced by the characteristic function χω of the set ω) that meansZ
ω

u(x)dx= tr
(
ρ(v)M(χω)

)
, (5)

for all Lebesgue measurable subsets ω of (a,b). By replacing the real-valued distribution
function (3) by a generalized distribution function with 2×2-matrix values, this concept of
particle density carries over to the setup we investigate in this project, cf. [4, Section 5.1]. It
should be noted that the species current density between the reservoirs also can be expressed in
terms of the ψk, cf. [4, Section 5.2].
In the asymptotic regions x < a and x > b the generalized eigenfunctions ψk can be written as
a superposition of plane waves. This allows to define boundary conditions at a and b, with
respect to the dispersion relation λ = λ(k), by means of the quantum transmitting boundary
method, cf. [7, 16]. The corresponding homogeneous boundary conditions are

h̄
m(a)

ψ′(a) =−i v(k)ψ(a),
h̄

m(b)
ψ′(b) = i v(−k)ψ(b), k∈R, (6)

where v(k), k ∈R, is the group velocity defined by v = 1
h̄

dλ
dk. The differential expression (1),

together with the boundary conditions (6), sets up a family of maximal dissipative operators on
the Hilbert space L2(a,b). We call this family, in the style of [16], the quantum transmitting
boundary operator family (QTB operator family), cf. [4, Section 2]. The QTB operator
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family already contains all the information needed to define, in conjunction with a generalized
distribution function ρ, physical quantities such as the particle density, the current density, and
the scattering matrix.
The interaction between an electric field and carriers of charge within a semiconductor device
can be modeled by Poisson’s equation, cf. [8] and the references cited there:

− d
dx

ε(x)
d
dx

ϕ(x) = q
(
C(x)+N +(v+)(x)−N −(v−)(x)

)
, x∈ (a,b), (7)

where q denotes the elementary charge, C is the density of ionized dopants in the semiconductor
device, ε > 0 is the dielectric permittivity function, and ϕ is the electrostatic potential,
v± =∓w±±qϕ are the potential energies of electrons (“−”) and holes (“+”), and w−, w+ are
the conduction and valence band offset, respectively. The quantum transmitting Schrödinger-
Poisson system is a Poisson equation (7) with nonlinear electron and hole density operators
N − and N + defined as the map of a potential v to the density (5) with steady states ρ−(v) and
ρ+(v), respectively. In [4, Section 6] we have demonstrated that the thus defined carrier density
operators are continuous; the corresponding currents are uniformly bounded for all potentials
v. We have proved that the quantum transmitting Schrödinger-Poisson system comprising
electrons and holes always admits a solution provided the function inducing the steady states
has reasonable decay properties with increasing energy. Furthermore, we give a priori estimates
for the solutions. The a priori bounds for the electrostatic potential and the electron and hole
density of solutions are explicit expressions in the data of the problem. Ben Abdallah, Degond,
and Markowich have investigated a special case of this model in [6] and prove the existence of
solutions for the unipolar case. Unfortunately, the mathematical techniques used in their proof
do not apply to the bipolar case, which we treat in this project.
The quantum transmitting Schrödinger-Poisson system is closely related to the dissipative Schrö-
dinger-Poisson system, which we have investigated in [5], cf. Annual Research Report 2002, pp.
26–28. In particular, the dissipative Schrödinger-Poisson system and the quantum transmitting
Schrödinger-Poisson system coincide for fixed energy, modulo a unitary transformation.
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Nonlocal phase separation problems for multicomponent systems

Collaborators: J.A. Griepentrog, H. Gajewski

To describe phase separation processes we consider a closed multicomponent system with
interacting particles of type k ∈ {0,1, . . . ,n} occupying a spatial domain. In our model we
assume that the particles jump around on a given microscopically scaled lattice following a
stochastic exchange process (see [2]). On each lattice site sits exactly one particle (exclusion
principle). Two particles of type k and l change their sites x and y with probability pkl(x,y)
due to diffusion and nonlocal interaction. The hydrodynamical limit leads to a system of
conservation laws for k∈ {0,1, . . . ,n},

u′k +∇ · jk = 0 in (0,T)×Ω , ν · jk = 0 on (0,T)×∂Ω , uk(0) = gk in Ω , (1)

for (scaled) particle densities u0,u1, . . . ,un , their initial values g0,g1, . . . ,gn, and current
densities j0, j1, . . . , jn . Here, (0,T) denotes a time interval and ν is the outer unit normal on
the boundary ∂Ω of the bounded m-dimensional Lipschitz domain Ω. Due to the exclusion
principle of the stochastic process we can assume ∑n

k=0 uk = 1, ∑n
k=0 gk = 1, and ∑n

k=0 jk = 0,
that means, only n of the n+1 equations in (1) are independent of each other. Hence, we can
drop out one equation, say the equation for the zero component, and describe the state of the
system by n-component vectors u = (u1, . . . ,un) having in mind the notation u0 = 1−∑n

k=1 uk .

To establish thermodynamical relations between current densities, particle densities, and their
conjugated variables, we minimize the free energy functional under the constraint of particle
number conservation. In contrast to the classical Cahn–Hilliard theory we consider diffuse
interface models and free energy functionals with nonlocal expressions. As a straightforward
generalization of the nonlocal phase separation model for binary systems (see [1]) we define a
free energy functional F = F1 +F2 by

F1(u) =
Z

Ω
f (u(x))dx, F2(u) =

1
2

n

∑
k=0

Z
Ω
(Ku)k(x)uk(x)dx, (2)

f (u) =
n

∑
k=0

uk log(uk) , (Ku)k(x) =
n

∑
l=0

Z
Ω

κkl(x,y)ul (y)dy. (3)

The convex function f and the symmetric (n+1)× (n+1)-matrix kernel κ define the chemical
part F1 and the nonlocal interaction part F2 of the functional F , respectively. Minimizing F
under the constraint of particle number conservation, we identify the conjugated variables of
the densities as grand chemical potential differences

λk =
∂F
∂uk

= µk +wk , k∈ {1, . . . ,n} ,

where µk and wk are chemical and interaction potential differences, respectively,

µk =
∂F1

∂uk
= log(uk)− log(u0) , wk =

∂F2

∂uk
= (Ku)k− (Ku)0 , k∈ {1, . . . ,n} . (4)

The hydrodynamical limit process (see [2]) yields current densities

jk =−
n

∑
l=1

akl(u)∇λl , k∈ {1, . . . ,n} ,
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where the mobility has the form a(u) = d(u)(D2 f (u))−1, and d(u) denotes the diffusivity.
Hence, we can interpret the above nonlocal phase separation model as a system of drift-
diffusion equations with semilinear diffusion and nonlinear nonlocal drift terms, if we rewrite
the currents as

jk =−
n

∑
l=1

dkl(u)∇ul −
n

∑
l=1

akl(u)∇wl , k∈ {1, . . . ,n} .

In [4] we consider the case dkl = δkl . Then, an elementary computation of the inverse Hessian
matrix (D2 f (u))−1 yields the following expressions for the mobility coefficients

akl(u) = δkl uk−ul uk , k, l ∈ {1, . . . ,n} .

For the functional analytic formulation of our problem we use standard spaces

H = [L2(Ω)]n , V = [H1(Ω)]n , L∞ = [L∞(Ω)]n ,

respectively, and their generalizations suitable for evolution systems,

H = L2((0,T);H) , V = L2((0,T);V) , L∞ = L∞((0,T);L∞) , W = {u∈ V : u′ ∈ V ∗} .

Having in mind u0 = 1−∑n
k=1 uk , we define simplices S⊂ L∞ and S ⊂ L∞ by

S= {g∈ L∞ : 0≤ g0,g1, . . . ,gn≤ 1} , S = {u∈ L∞ : 0≤ u0,u1, . . . ,un≤ 1} .

Furthermore, we introduce the drift-diffusion operator A : [V ∩L∞]×V −→ V ∗ by

〈A(u,w),ϕ〉=
n

∑
k=1

Z T

0

Z
Ω

∇uk ·∇ϕk dxds+
n

∑
k=1

n

∑
l=1

Z T

0

Z
Ω

akl(u)∇wl ·∇ϕk dxds,

for (u,w) ∈ [V ∩L∞]×V , ϕ ∈ V . More general than in the above description of the model,
we assume that the interaction between particles can be described by means of a (possibly
nonlinear and nonlocal) Lipschitz continuous interaction operator P : H −→ V .

Applying fixed-point arguments and comparison principles in [4], we show that for every initial
value g∈ S there exists a solution (u,w) ∈ [W ∩S ]×V of the evolution system

u′+A(u,w) = 0 , w = Pu, u(0) = g. (5)

Moreover, under some natural regularity assumption on the interaction operator P : H −→ V
in [4] we also get the unique solvability of our problem. In fact, we additionally assume that P
has the Volterra property and that the restriction of P to L∞ is a Lipschitz continuous operator
from L∞ into a certain Sobolev–Morrey space X σ ⊂ V for some parameter σ > m. Then, our
regularity theory for initial boundary value problems with nonsmooth data in Sobolev–Morrey
and Hölder spaces (see [3]) enables us to prove the unique solvability of problem (5).

To illustrate our results, we consider an example of a ternary system, where the interaction
operator P : H −→ V is defined by (Pu)k = (Ku)k− (Ku)0 , k ∈ {1, . . . ,n} (see (3), (4), (5)).
The corresponding matrix kernel κ is chosen such that particles of the same type attract and
particles of different type repel each other with the same range and strength of interaction.
Figures 1 and 2 show simulation results of phase separation processes in a unit square.
Notice that both initial configurations contain equal numbers of black, white, and red particles,
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respectively. Moreover, the final states are local minimizers of the free energy functional F
under the constraint of particle number conservation.

Fig. 1: Phase separation process for an initial value which is constant in the vertical direction.
The stripe pattern is preserved during the whole evolution.

Fig. 2: Phase separation process for a symmetric initial value. There occur metastable states.
Finally, the phases are separated by a straight line and circular arcs.
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Stationary solutions of a two-dimensional heterogeneous energy model for semiconductor
devices near equilibrium

Collaborators: A. Glitzky, R. Hünlich

Cooperation with: L. Recke (Humboldt-Universität zu Berlin)

Semiconductor devices are heterostructures consisting of various materials (different semi-
conducting materials, passive layers, and metals as contacts, for example). A typical sit-

.

Ω0

Ω1

ΓN0

ΓN1

ΓN01
ΓS

Ω

ΓD0

ΓD0

Fig. 1: Schematic picture of a modeled
semiconductor device

uation is shown in Figure 1. Equations for the
contacts are substituted by Dirichlet boundary con-
ditions on the two parts of the boundary ΓD0. In
the remaining domain Ω, involving the passive
layer (Ω1) and semiconducting materials (Ω0), we
have to formulate a Poisson equation and an en-
ergy balance equation with boundary conditions
on Γ = ΓD0∪ΓN0∪ΓN1∪ΓS, where the subscripts
D, N, and S indicate the parts with Dirichlet, in-
homogeneous Neumann, and symmetry boundary
conditions, respectively. Only in the part Ω0, con-
tinuity equations for electrons and holes have to
be taken into account, and here we must formulate
boundary conditions on Γ0 = ΓD0∪ΓN01∪ΓN0∪ΓS.
Let T and ϕ denote the lattice temperature and the
electrostatic potential. Then the state equations for

electrons and holes are given by the following expressions

n = N(·,T)F
(ζn +ϕ−En(·,T)

T

)
, p = P(·,T)F

(ζp−ϕ+Ep(·,T)
T

)
in Ω0,

where n and p are the electron and hole densities, N and P are the effective densities of state,
ζn and ζp are the electrochemical potentials, En and Ep are the energy band edges, respectively.
The function F arises from a distribution function (e.g., F(y) = ey in the case of Boltzmann
statistics, or F(y) = F1/2(y) in the case of Fermi-Dirac statistics). The electrostatic potential ϕ
fulfils the Poisson equation

−∇ · (ε∇ϕ) =

{
f −n+ p in Ω0

f in Ω1
. (1)

Here, ε is the dielectric permittivity and f is a given doping profile. Mixed boundary conditions
on Γ have to be prescribed. For the densities of the particle fluxes jn, jp and of the total energy
flux je, we make the ansatz (see [1])

jn =−(σn +σnp)(∇ζn +Pn∇T)−σnp(∇ζp +Pp∇T) in Ω0,

jp =−σnp(∇ζn +Pn∇T)− (σp +σnp)(∇ζp +Pp∇T) in Ω0,

je =

{
−κ∇T +∑i=n,p(ζi +PiT) j i , in Ω0

−κ̃∇T , in Ω1
,
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with conductivities σn = σn(x,n, p,T) > 0, σp = σp(x,n, p,T) > 0, σnp = σnp(x,n, p,T)≥ 0, κ =
κ(x,n, p,T) > 0, κ̃ = κ̃(x,T) > 0, and transported entropies Pn = Pn(x,n, p,T), Pp = Pp(x,n, p,T).
These flux densities fulfil the balance equations

∇ · jn =−R, ∇ · jp =−R in Ω0, ∇ · je = 0 in Ω, (2)

where the net recombination rate R has the form

R= r(·,n, p,T)(e(ζn+ζp)/T −1) in Ω0.

Suitable boundary conditions on Γ0 for the first two continuity equations and on Γ for the last
energy balance equation have to be added.
We use the variables z= (z1,z2,z3,z4) = (ζn/T|Ω0,ζp/T|Ω0,−1/T,ϕ), where z1, z2 are defined
on Ω0, while z3, z4 live on Ω. Then the stationary energy model for semiconductor devices can
be written in the more compact form

−∇ ·




a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 ε







∇z1

∇z2

∇z3

∇z4


 =




−R
−R
0
f −n+ p


 in Ω0,

−∇ ·
(

ã33 0
0 ε

) (
∇z3

∇z4

)
=

(
0
f

)
in Ω1,

(3)

with coefficient functions aik(x,z) = aki(x,z), x ∈ Ω0, z∈ R2 × (−∞,0)×R, i,k = 1, . . . ,3,
ã33(x,z3), x∈ Ω1, z3 ∈ (−∞,0), ε(x), x∈ Ω, and R, n, and p have to be regarded as functions
of x∈Ω0 and z∈R2× (−∞,0)×R.
We consider the boundary conditions

zi = zD0
i , i = 1,2,3,4, on ΓD0,

ν ·∑k=1,2,3 aik(x,z)∇zk = gN0
i , i = 1,2,3, ν · (ε∇z4) = gN0

4 on ΓN0,

ν · ã33(z3) = gN1
3 , ν · (ε∇z4) = gN1

4 on ΓN1,

ν ·∑k=1,2,3 aik(x,z)∇zk = 0, i = 1,2, on ΓN01,

ν ·∑k=1,2,3 aik(x,z)∇zk = 0, i = 1,2,3, ν · (ε∇z4) = 0 on ΓS.

(4)

We use the vectors zD = (zD
1 , . . . ,zD

4 ), g = (gN0
1 , . . . ,gN0

4 ,gN1
3 ,gN1

4 ), and the triplet of data
w = (zD,g, f ) and look for weak solutions of (3), (4) in the form z = Z + zD, where zD

corresponds to a function fulfilling the Dirichlet boundary conditions and Z represents the
homogeneous part of the solution.
We assume that the boundary values zD

i , i = 1,2,3,4, are traces of W1,p-functions, p> 2. Under
weak assumptions on the coefficient functions ai j , ã33, and ε (for example, Ω0 can be composed
of different semiconducting materials), we found W1,q–formulations (q∈ (2, p]) for that system
of equations,

F(Z,w) = 0, Z ∈W
1,q
0 (Ω0∪ΓN0∪ΓN01∪ΓS)2×W

1,q
0 (Ω∪ΓN0∪ΓN1∪ΓS)2.

If w∗ = (zD∗,g∗, f ∗) is arbitrarily given such that the boundary values zD∗
i , i = 1,2,3, are

constants, zD∗
1 +zD∗

1 = 0 and zD∗
3 < 0 and g∗ = (0,0,0,gN0∗

4 ,0,gN1∗
4 ), then there exists a unique
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solution Z∗ of F(Z∗,w∗) = 0. Then z∗ = Z∗+zD∗ is a thermodynamic equilibrium of (3), (4).
Using techniques from [5], the operator F turned out to be continuously differentiable. For
suitable q > 2, we proved that its linearization ∂F

∂Z (Z∗,w∗) is an injective Fredholm operator of
index zero. For this purpose we derived new results concerning W1,q-regularity and surjectivity
for strongly coupled systems of linear elliptic equations which are defined on different domains.
Here we adapted ideas of [4]. We applied the Implicit Function Theorem and obtained that for
w = (zD,g, f ) near w∗, the equation F(Z,w) = 0 has a unique solution Z near Z∗. Thus, near z∗
there is a locally unique Hölder continuous solution z= Z+zD of (3), (4). For details and the
precise assumptions of our investigations see [3].
In [2] we investigated an energy model with multiple species, but there the continuity equations,
the energy balance equation, and the Poisson equation were defined on the same domain.
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To be able to deal with phase transitions, one has to take into account hysteretic phenomena
that are modeled by hysteresis operators. Moreover, methods derived for dealing with hysteresis
operators also allow to derive results for equations formulated without a hysteresis operator.
In a number of papers (see, for instance, [1, 2, 4] and the references given therein),
integrodifferential (nonlocal) models for isothermal phase transitions with either conserved
or non-conserved order parameters have been studied, leading to a number of results concerning
existence, uniqueness, and asymptotic behavior of solutions. In the recent papers [3, 10]
the more difficult non-isothermal case has been treated, modeling the phase transition by
considering the time evolution of an order parameter χ and of the absolute temperature θ. In
these papers, one uses a free energy density containing a logarithmic part that forces the order
parameter to attain values within the physically meaningful range [0,1].
Within the covered research period, the results of [10] have been complemented by investigating
the case when the logarithmic part is replaced by the indicator function I[0,1] of the interval
[0,1], see [8]. Considering the phase transition within a container Ω⊂RN that forms an open
and bounded domain, and denoting with T > 0 some final time, the following system has been
considered in Ω× (0,T):

µ(θ)χt + θF ′1(χ) + F ′2(χ) + Q[χ] ∈ −∂I[0,1](χ) , (1)

Q[χ](x, t) =
Z

Ω
K(x−y)(1−2χ(y, t))dy, (2)

CV θt + (F ′2(χ) + Q[χ])χt − κ∆θ = 0 , (3)

with a given kernel function K :RN → [0,∞), appropriate functions µ, F1, and F2, and positive
constants CV and κ. In [8], this system has been investigated by introducing the generalized
freezing index

w(x, t) = w0(x) −
Z t

0

[
1

µ(θ)
(
θF ′1(χ)+F ′2(χ)+Q[χ]

)]
(x,τ)dτ , (4)

with some initial condition w0, so that χ(x, t) = s[0,1][χ0(x),w(x, ·)](t) with s[0,1] : [0,1]×
C[0,T]→C[0,T] being the stop operator for the interval [0,1]. This has been used to eliminate
χ from (1)–(3), leading to a system for (w,θ) involving hysteresis operators, which is of the
same form as the system considered in [7, 9] except for the nonlocal term. The lines of
argumentation used in [7, 9] have been adapted to deal also with the nonlocal term and, in [10],
this has been used to prove results concerning existence, uniqueness, and asymptotic behavior
for t → +∞, resembling those established in [10] for the smooth case. The results are even
more complete than those of [10] since a certain crucial assumption is not needed in [8].
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It has been shown in [5, 6] that one can derive uniform estimates for the solutions to some
partial differential equations involving hysteresis operators, if these operators are “outward
pointing hysteresis operators”. For scalar Prandtl-Ishlinskii operators and generalizations of
these operators, appropriate conditions that allow to check if these operators are pointing
outward have been formulated in [5, 6]. Within the covered research period, it has been tried
to formulate also appropriate conditions for Preisach operators, but the derived conditions are
not yet satisfactory, and further investigations are required.
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Numerical simulation and optimization of SiC single crystal growth by sublimation from
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Supported by: BMBF: “Numerische Simulation und Optimierung der Züchtung von SiC-
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Owing to numerous technical applications in electronic and optoelectronic devices, the industrial
demand for high quality silicon carbide (SiC) bulk single crystals remains large. It is still
a challenging problem to grow sufficiently large SiC crystals with a low defect rate. Subli-
mation growth of SiC bulk single crystals
via physical vapor transport (PVT), also
known as the modified Lely method, has
been one of the most successful and most
widely used growth techniques of recent
years.
During PVT, a graphite crucible (see Fig-
ure 1) is placed in a low-pressure inert
gas atmosphere consisting of argon. The
crucible is then intensely heated, e.g.,
by induction heating, to temperatures up
to 3000 K. Inside the crucible, polycrys-
talline SiC source powder sublimates, and
the gaseous species diffuse through the
cavity from the powder to the SiC seed.
As the single-crystalline seed is kept at a
temperature below that of the SiC source,
the species crystallize on the seed, which
thereby grows into the reactor.

porous graphite

gas SiC crystal

SiC powder

insu-
lation

blind hole for
cooling of seed

�

induction
coil rings

z � zrim

z � 0

Fig. 1: Setup of growth apparatus according to [6]

The physical and mathematical modeling of the growth process leads to a highly nonlinear
system of coupled partial differential equations. In addition to the kinetics of a rare gas mixture
at high temperatures, one has to consider heat transport by conduction and radiation, reactive
matter transport through porous and granular media, and different kinds of chemical reactions
and phase transitions. The main control parameters with respect to an optimization of the
crystal growth process are the design of the growth apparatus, the position of the induction coil,
the heating power, and the inert gas pressure.
The heat sources caused by induction heating are computed via an axisymmetric complex-valued
magnetic scalar potential that is determined as the solution of an elliptic PDE using the imposed
voltage as input data. The scalar potential enables one to calculate the resulting current density
and thus the heat sources (see [1, 2] and the references therein).

http://www.wias-berlin.de/research/projects/sic
http://www.wias-berlin.de/research/projects/sic
http://www.math.TU-Berlin.de/math-net/pages/page_standard.html
http://www.ikz-berlin.de
http://www.fzt86.de/
http://www.fzt86.de/
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Within the covered research period, the simulation software WIAS-HiTNIHS (see p. 257) has
been tested at the IKZ by comparing, for a simple version of the equations, the results derived
with WIAS-HiTNIHS with results computed by other software. This has led to an enlargement
of the region considered for computations and to some improvements of WIAS-HiTNIHS.
In [4], based on the numerical solution of the stationary mathematical model for the heat
transport in the growth system by WIAS-HiTNIHS, a Nelder-Mead method has been used for
a numerical optimization of the control parameters frequency f , power P, and coil position zrim

for the radio frequency (RF) induction heating of the growth apparatus. The control parameters
have been determined to minimize a cost functional, being either the L∞-norm of the radial
temperature gradient on the single crystal surface or the L2-norm Fr,2 of this radial gradient,
or Fr,2 minus the L2-norm Fz,2 of the vertical temperature gradient between SiC source and
seed. The optimizations have been subject to constraints with respect to a required temperature
difference between source and seed, a required temperature range at the seed, and an upper
bound for the temperature in the entire apparatus.
Several series of Nelder-Mead optimizations of (P,zrim) have been performed, varying the used
initial values and keeping the frequency f fixed. Moreover, also the functional dependence of
the cost functional on (P,zrim) as well as the restrictions imposed by the state constraints have
been studied, varying the power P and the coil position zrim and performing, for each (P,zrim),
a forward computation to compute temperature fields T = T( f ,P,zrim) and the corresponding
value of the cost functionals.
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Fig. 2: Contour plots of the functionals Fr,2 (left-hand side) and 1
2Fr,2− 1

2Fz,2 (right-hand side)
restricted to the part of the (P,zrim)-plane where the state constraints are satisfied. Therein, a

star marks the location where the smallest value of the considered objective functional
occurred during the series of forward computations discussed, and the locations of results of 9

corresponding 2-dimensional Nelder-Mead computations (keeping f = 10 kHz fixed) are
indicated by dots, which can be found on the lower edge of the respective admissible region.

Moreover, we have performed three-dimensional Nelder-Mead optimizations, controlling f in
addition to P and zrim. As in the two-dimensional optimizations, different objective functionals
have been considered. Varying the initial values, series of 27 Nelder-Mead computations have
been performed. The results for two series are shown in Figure 3.
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Fig. 3: Result values for (P,zrim, f ) for two series of three-dimensional Nelder-Mead
computations, with a color presentation of the corresponding values of the objective function

Fr,2 (left-hand side) and 1
2Fr,2− 1

2Fz,2 (right-hand side). The big point in each figure
corresponds to the triple with the respective lowest value of the considered objective function.

The effect of the respective minimizations of Fr,2(T) and of 1
2Fr,2(T)− 1

2Fz,2(T) on the shape
of the temperature distribution between SiC source and crystal is portrayed in Figure 3. Therein,
one has the stationary solution for a generic, unoptimized situation, and also the solutions with
the lowest values for Fr,2(T) and for 1

2Fr,2(T)− 1
2Fz,2(T) found within the three-dimensional

Nelder-Mead computations, which are marked in Figure 3.
As a result of the optimizations, a minimal radial temperature gradient is found to coincide
with a minimal temperature at the single crystal surface, and a maximal temperature gradient
between source and seed is found to coincide with a low coil position.

In [5], a quite general version of transient nonlinear and nonlocal heat transport equations has
been discretized using an implicit Euler scheme in time and a finite volume method in space.
For the corresponding nonlinear and nonlocal discrete scheme, the existence of a unique discrete
solution has been proved and discrete L∞-L1 a priori estimates have been established. In [3], a
less general version of the equations has been considered, and the existence of a unique discrete
solution to the corresponding discrete scheme has been proved under weaker assumptions for
the discretization, and, moreover, a discrete L∞-L∞ a priori estimate has been derived.
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Fig. 4: The shape of the temperature distribution between SiC source and crystal. The
distribution on the top corresponds to a generic, unoptimized situation, using f = 10 kHz,

P = 10 kW, and zrim = 24 cm. The lower figures present temperature distributions
corresponding to those values for ( f , p,zrim) with the lowest values for Fr,2(T) (left-hand side)

and of 1
2Fr,2(T)− 1

2Fz,2(T) (right-hand side) found by the three-dimensional Nelder-Mead
computations, which have been marked in Figure 3.
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Approximation and optimization of curved mechanical structures
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The work for this research project continued in several directions. We have finished paper
[1] concerning the optimization of structures like curved rods and shells. This gives a rather
complete theoretical treatment of the subject, under low regularity assumptions for the geometry.
Numerical experiments involving three-dimensional curved rods are also included. Notice that
in [3] the case of planar arches was completely solved. Paper [5] introduces a new approach,
based on control theory, for the general linear elasticity system and discusses some thickness
optimization problems for plates. In [2] stable approximation methods are investigated in
connection with the curved rod model proposed in [4]. It is well known that differential
equations involving very small parameters (in this case the “thickness” of the rod, i.e. the area
of the cross section) may be very difficult to handle via standard finite element methods. This
difficulty is known under the name “locking problem”. We propose a method that can improve
the stability properties in computations related to curved rods.
Finally, paper [6] considers a new way to obtain a model for the deformation of elastic curved
rods, of asymptotic type. The new estimates that we derive allow to study curved rods with
piecewise C1 parametrization.
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Lyapunov functions for positive linear evolution problems in C ∗
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Lyapunov functions for evolution equations are important tools for their variational formulation
and the asymptotic investigation of the underlying problem. As usual, for a given equation
we have a special Lyapunov function. So, it is well known (see, e.g., [2]) that the classical
Fokker-Planck equation

∂
∂t

W(z, t) = (A∗W)(z) = −
n

∑
i=1

∂
∂zi

(
ai(z)W

)
+

n

∑
i, j=1

∂2

∂zi∂zj

(
bi j (z)W

)
(1)

has the Lyapunov function

H(t) = H[W1,W2] =
Z

Γ
W1(z, t) log

W1(z, t)
W2(z, t)

dz, (2)

where W1 and W2 are two solutions (for different initial data) to equation (1). The Lyapunov
function H(t) has the properties H(t)≥ 0, H[W,W] = 0, and d

dtH(t)≤ 0. If we take the stationary
solution W2 = W∞, H(t) has the physical meaning of a negative entropy, and d

dtH(t)≤ 0 can be
understood as the second law of thermodynamics, showing (under further assumptions) that the
considered physical system tends to the equilibrium state W∞.
Equation (1) describes the evolution of the probability density W(z, t) of a Markov process
z(t) in phase space z(t) ⊂ Γ ⊂ Rn. As usual, equation (1) is considered in L1-type spaces,
for instance L1(Γ,dz), where it has (under certain assumptions) a unique normalized positive
solution W(z, t)≥ 0, ‖W(·, t)‖L1 = 1, if the initial density W0(z) is positive and normalized.
In general, e.g., if the coefficients of (1) degenerate bi j (z) ≥ 0, the densities can vanish
somewhere or they may not exist at all. In this case it is difficult to understand what is H(t),
defined by (2), and to show d

dtH(t)≤ 0 in a rigorous way. Furthermore, it is natural to ask if
there are other Lyapunov functions of (1) and what other equations of this type have Lyapunov
functions. These problems can be solved completely by an inequality for Radon measures ([3])
in the following way:
Let Γ be a compact topological Hausdorff space, C (Γ) the space of continuous real-valued
functions on Γ, and C ∗(Γ) (the dual of C (Γ)) the space of regular Radon measures, C ∗∗(Γ) the
bidual of C (Γ), and 〈·, ·〉 their dual pairing.
Let S∗ = {p ∈ C ∗(Γ) : p≥ 0,‖p‖ = 1} be the convex set of positive and normalized (i.e.
probability) measures in C ∗(Γ) and S∗e =

{
δz

∣∣ z∈ Γ
}

the subset of extreme points of S∗.
Let S be a linear Markov operator in C (Γ), i.e. an operator with S≥ 0 and S 1 = 1, and S∗ its
adjoint. S∗ is invariant with respect to adjoint Markov operators.

Theorem 1: Let p,q ∈ S∗, S∗ the adjoint of a Markov operator and F(x) : R+ −→ R a
convex function with F(1) = 0. Let q/p be the Radon-Nikodym derivative of q by p and
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H[p,q] := 〈F (q/p) , p〉, then the following inequality holds: 0≤H[S∗p,S∗q]≤H[p,q]. Equality
holds if S∗ maps extreme points to extreme points S∗S∗e ⊂ S∗e .

This result can be extended, if q/p does not exist, but H[p,q] exists.
From this inequality one can derive Lyapunov functions for linear evolution equations for
probability measures. Let A be the generator of a continuous semigroup in C (Γ), satisfying
A1 = 0 and the maximum principle, i.e. (Ag)(z+)≤ 0 for g∈D(A), where z+ is the max-point
of g (i.e. g(z)≤ g(z+), z∈ Γ). Then, it is well known ([1]) that the evolution equation

ṗ(t) = A∗p(t), p(0) = p0 ∈ S∗ (3)

has a unique weak* solution in S∗ ⊂ C ∗(Γ) for any t.

Theorem 2: Let p0,q0 ∈ S∗ and H[p0,q0] := 〈F (q0/p0) , p0〉 exist. Let p(t) and q(t) be two
solutions to equation (3) with p(0) = p0 and q(0) = q0. Then H[p(t),q(t)] exists for all times
and satisfies 0≤H[p(t2),q(t2)]≤H[p(t1),q(t1)], t2 ≥ t1. If equation (3) is the Liouville equation
of a dynamical system ż= Φ(z) with solution in C (Γ), then equality holds, i.e. the function
H(t) = H[p(t),q(t)] is constant in time.

If q = q∞ is any stationary solution, we get 0≤ H[p(t2),q∞]≤ H[p(t1),q∞] for t2 ≥ t1.
Similar results can be obtained for non-autonomous problems and Markov chains.
If Γ⊂Rn, then the general form of operators A, satisfying the maximum principle, is

(
Ag

)
(z) =

n

∑
i=1

ai(z)
∂

∂zi
g+

n

∑
i, j=1

bi j (z)
∂2

∂zi∂zj
g+−
Z

Γ
Q(z,z′)

(
g(z′)−g(z)

)
dz′

with suitable coefficients bi j ≥ 0, Q(z,z′)≥ 0. The mean-valued integral is a pseudo-differential
operator of order less than 2. The corresponding kinetic equation is formally

∂
∂t

W(z, t) = −
n

∑
i=1

∂
∂zi

(
ai(z)W

)
+

n

∑
i, j=1

∂2

∂zi∂zj

(
bi j (z)W

)
+

+ −
Z

Γ

(
Q(z′,z)W(z′)−Q(z,z′)W(z)

)
dz′

(if there is no density W, this equation is to be understood in a weak* sense in S∗).
While this result holds for arbitrary convex functions F(x), the second law for linear kinetic
equations is not a consequence of the special definition of the entropy by the log function. Any
negative entropy, defined by H(t) = 〈F (p∞/p(t)) , p(t)〉 is constant in a deterministic system
and decreases in a random system.
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4.2 Research Group Laser Dynamics

4.2.1 Overview

Im Mittelpunkt der Forschungen steht die Ent-
wicklung analytischer und numerischer Metho-
den zur Analyse, Simulation und Steuerung
dynamischer Systeme und deren Anwendung
auf Probleme optischer Kommunikationssyste-
me und der Reaktionskinetik.
Forschungsschwerpunkte sind

• Modellierung, Analyse und Simulati-
on der Dynamik von Mehrsektions-
Halbleiterlasern mit verzögerter Rück-
kopplung,

• Verzweigungen und Stabilitätswechsel in
Mehrskalensystemen.

Die Erfolge der Forschungsgruppe basieren auf
enger nationaler und internationaler Kooperati-
on, die finanziell durch das WIAS, die DFG,
den DAAD und das BMBF gefördert wurde.
Die Ergebnisse wurden in führenden interna-
tionalen Zeitschriften veröffentlicht.

The research of the group is focused on the
development of analytic and numerical meth-
ods for the analysis, simulation, and control
of dynamical systems and their applications
to problems of optical communication systems
and reaction kinetics.
The main research is concerned with the fol-
lowing topics

• Modeling, analysis, and simulation of the
dynamics of multi-section semiconductor
lasers with delayed feedback;

• Bifurcations and exchange of stabilities
in multi-scale systems.

The successes of the research group are based
on a close national and international cooper-
ation financially supported by WIAS, DFG,
DAAD, and BMBF. The results have been
published in leading international journals.

Wir möchten erwähnen, dass die Resulta-
te auf dem Gebiet des Stabilitätswechsels in
Mehrskalensystemen, die in Zusammenarbeit
mit dem Lehrstuhl für Differentialgleichungen
an der Physikalischen Fakultät der Staatlichen
Universität Moskau erhalten wurden, einen
wesentlichen Anlass für die Verleihung des
Lomonossov-Preises erster Klasse an unsere
Partner Prof. V. F. Butuzov, Prof. N. N. Nefe-
dov und Prof. A. B. Vasil’eva bildeten.
Ein weiterer Höhepunkt in der Arbeit unserer
Forschungsgruppe war das internationale Echo
auf die Workshops

• Multiscale Systems and Applications,

• Dynamics of Semiconductor Lasers,

die von unserer Gruppe in Zusammenarbeit
mit dem DFG-Forschungszentrum „Mathema-
tik für Schlüsseltechnologien“ und dem Son-
derforschungsbereich 555 „Komplexe Nichtli-
neare Prozesse“ durchgeführt wurden.

We would like to mention that the research
achievements in the field of exchange of sta-
bilities in multiscale systems obtained in coop-
eration with the chair of differential equations
at the Faculty of Physics of the Moscow State
University essentially contributed to award-
ing Prof. V.F. Butuzov, Prof. N.N. Nefe-
dov and Prof. A.B. Vasil’eva the First Class
Lomonosov Prize.

A further highlight of the work of our research
group was the international response to the
workshops

• Multiscale Systems and Applications;

• Dynamics of Semiconductor Lasers,

organized by our group in cooperation with the
DFG Research Center “Mathematics for Key
Technologies” and the Collaborative Research
Center 555 “Complex Nonlinear Processes”
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4.2.2 Projects

Dynamics of semiconductor lasers

Collaborators: M. Radziunas, K.R. Schneider, D. Turaev (until 10/03), A. Vladimirov,
M. Wolfrum, S. Yanchuk, U. Bandelow (FG 1)

Cooperation with: B. Sartorius, O. Brox, S. Bauer, B. Hüttl, R. Kaiser, M. Rehbein
(Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, Berlin (HHI)), H.-J. Wün-
sche (Institut für Physik, Humboldt-Universität zu Berlin (HU)), L. Recke (Institut für Mathe-
matik, Humboldt-Universität zu Berlin (HU)), H. Wenzel (Ferdinand-Braun-Institut für Höchst-
frequenztechnik, Berlin (FBH)), M. Umbach (u2t Photonics AG, Berlin), S.V. Gonchenko
(Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, Russia), G. Kozyreff
(Mathematical Institute, Oxford University, UK)

Supported by: BMBF: “Hochfrequente Selbstpulsationen in Mehrsektions-Halbleiterlasern:
Analysis, Simulation und Optimierung” (High frequency self-pulsations in multi-section semi-
conductor lasers: Analysis, simulations, and optimization),
DFG: DFG-Forschungszentrum „Mathematik für Schlüsseltechnologien“ (Research Center
“Mathematics for Key Technologies”), projects D3 and D8; SFB 555 “Komplexe Nichtli-
neare Prozesse” (Collaborative Research Centre “Complex Non-linear Processes”)
Terabit Optics Berlin: project “Modeling and simulation of mode-locked semiconductor lasers”

Semiconductor lasers are key elements in modern telecommunication systems. Our research is
focused on edge-emitting multi-section lasers, which due to their complex nonlinear dynamical
behavior can be used for generating, transforming, and processing optical signals at high speed.
In this project, we are concerned with a broad range of questions, including modeling and
numerical simulation as well as analytical investigations of the models and their dynamical
properties.
With the software LDSL-tool, we develop a comprehensive toolkit to simulate and analyze
the spatio-temporal dynamical behavior of a broad range of multi-section lasers, including
lasers with dispersive or amplified feedback, mode-locked lasers with saturable absorbers, and
interaction of several coupled lasing sections.
Moreover, based on simplified models, we investigate analytically fundamental mathematical
structures leading to dynamical behavior like synchronization or short pulses of high intensity.
The main subjects in the period of this report were

• Synchronization of coupled lasers;

• Mode-locking in lasers with saturable absorbers;

• Numerical mode analysis by means of LDSL-tool;

• Quasiperiodic regimes in multi-section lasers.
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Synchronization of coupled lasers (K.R. Schneider, S. Yanchuk).
Using the model of coupled rate equations

dE1
dt = iδ̄E1 + 1

2

(
G1(N1, |E1|2)− 1

τp1

)
E1 +κe−iϕE2(t− τ̄),

dN1
dt = I1− N1

τc1
−Re[G1(N1, |E1|2)] · |E1|2,

dE2
dt = 1

2

(
G2(N2, |E2|2)− 1

τp2

)
E2 +κe−iϕE1(t− τ̄),

dN2
dt = I2− N2

τc2
−Re[G2(N2, |E2|2)] · |E2|2,

(1)

we study in [2] the dynamics of two face-to-face coupled semiconductor lasers with short time
delay τ (see Fig. 1).

ϕ
eη E1E1

E2
iϕ

eη

i

E
τ

2

E1 E2

Fig. 1: Schematic configuration of two face-to-face coupled semiconductor lasers

In particular, we have obtained conditions for the stability of synchronized and antisynchronized
regimes in the case of identical lasers (see Fig. 2a) as well as conditions for the existence of
stable locked states for coupled systems with detuning (see Fig. 2b). The bifurcation diagram
in Fig. 2a also reveals that the first destabilization threshold, i.e. the destabilization of the CW
solutions by increasing coupling η for fixed ϕ, may occur already for a coupling strength of
order τp/τc via Hopf bifurcation. Here, τp and τc (τp ¿ τc) are photon and carrier lifetimes,
respectively.
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Fig. 2: (a) Region of stability for synchronous “S” and antisynchronous “A” CW solutions,
respectively. “P” denotes the curves of transverse pitchfork bifurcation and “H” the curves of
Hopf bifurcation. (b) Stability regions Da,Ds for the stationary states of coupled systems with

detuning. “LP” denotes saddle-node bifurcation. “ZH” is a codimension-2 bifurcation point
(Guckenheimer-Gavrilov bifurcation).
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In [2] we derived conditions for the complete synchronization of two symmetrically coupled
identical systems of differential-delay equations

dx
dt

= f (x,x(t−1))+g(t,x,x(t−1),y,y(t−1)),

dy
dt

= f (y,y(t−1))+g(t,y,y(t−1),x,x(t−1)).

Complete synchronization is understood in the sense that ‖x(t)− y(t)‖ → 0 as t → ∞. For
the case of coupled ordinary differential equations with linear diffusive coupling we obtained
an estimate of the region of attraction of the synchronized solution. We have also estimated
the synchronization error for the case when the coupled systems are not identical, namely, for
perturbed systems of the type

dx
dt

= f (x)+ εh1(t,x,y)+g(t,x,y),

dy
dt

= f (y)+ εh2(t,x,y)+g(t,y,x)

with bounded functions |hi | ≤m0. Under some additional assumptions, we have established the
inequality

‖x(t,x0,y0)−y(t,x0,y0)‖ ≤ 2ε
m0

α
+e−αt

(
−2ε

m0

α
+ |x0−y0|

)
for t ≥ 0, (2)

with some positive ε and α. In the papers [3], [4], [5], we have performed mostly a numerical
study of the phenomenon of complete synchronization in coupled systems of chaotic oscillators.

Passive mode-locking in semiconductor lasers (D. Turaev, A. Vladimirov).
Passive mode-locking of lasers is a very effective technique to generate high quality short pulses
with high repetition rates. Monolithic semiconductor lasers, passively or hybrid mode-locked,
are ideal for applications in high speed telecommunication due to their compactness, low costs,
and reliability. The basic mechanism for passive mode-locking is well understood since the
analysis by New [21], who showed that the differential saturation of the gain and losses in
the laser cavity opens a short temporal window of net gain for pulses. A wide range of
experimental, numerical, and analytical methods exist to characterize mode-locking (for an
overview, see Haus [22] and Avrutin et al. [23]). While numerical integrations of traveling
wave field equations coupled to material equations (distributed models) faithfully reproduce
experimental observations, they offer little insight into the underlying dynamics. This is why
analytical approaches based on lumped element models, we refer to those introduced by New
[21] and Haus [22] for slow and fast saturable absorbers, are still widely used. Inevitably,
though, these approaches require certain approximations (such as, e.g., small gain and loss
per pass approximation) that are not satisfied for semiconductor lasers. Therefore, we have
proposed a new model for passive mode-locking in a monolithic semiconductor laser which
consists of a set of ordinary and delay-differential equations. Unlike the classical mode-locking
theories it does not use the approximations of small gain and loss per cavity round trip and
weak saturation; these are not satisfied enough in semiconductor laser devices. On the other
hand, as in most lumped element models, the spatial effects inherent to a linear cavity, such
as spatial hole burning and self-interference of the pulse near the mirrors, are neglected. This
amounts to consider a unidirectional lasing in a ring cavity. Absorbing, amplifying, passive,
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and spectral filtering segments are placed in succession in the cavity. Under the assumption of
Lorentzian lineshape of the spectral filtering element the following set of equations governing
the evolution of the complex envelope of the electric field, a(t), and of the saturable gain and
losses, g(t) and q(t) , have been derived starting from the traveling-wave equations

γ−1ȧ(t)+a(t) =
√

κe
1−iαg

2 g(t−T)− 1−iαq
2 q(t−T)a(t−T) . (3)

ġ(t) = g0− γgg(t)−e−q(t)
(

eg(t)−1
)
|a(t)|2 , (4)

q̇(t) = q0− γqq(t)−s
(

1−e−q(t)
)
|a(t)|2 . (5)

Here, the delay parameter T is equal to the cold cavity round trip time, g(t) and q(t) describe
unsaturated gain and loss, the parameter γ stands for the spectral width of the bandwidth limiting
element, s is the ratio of the saturation energies of the amplifying and absorbing sections; κ
describes linear non-resonant losses per cavity round trip, αg,q are the linewidth enhancement
factors.
The model equations (3)–(5), being more general than the classical mode-locking models by
New and Haus, can be reduced to these models in certain particular limits. New’s results [21]
can be obtained by setting γ−1 = 0 in the left-hand side of (3) and expanding the exponentials
on the right-hand side of (3), (4), and (5) up to the first-order terms in g and q. If, on the other
hand, we neglect all relaxation terms in (4) and (5), substitute their solutions in (3), expand
to second order in pulse energy, and finally assume periodicity with period T + δT, using the
expansion a(t)≈ a(t−T)+δTȧ(t−T) in the right-hand side of (3), then the Haus sech solution
[22] can be recovered in the limit γ→ ∞.
One advantage of this new formulation of the mode-locking problem is that it allows us to
make use of techniques that have been developed for delay-differential systems. In particular,
we have used the package DDE-BIFTOOL [24] in order to study bifurcations leading to the
appearance and break-up of a mode-locking regime.
The constant intensity (cw) solution of (3)–(5) exists above the linear threshold, g0/γg >(
q0/γq− lnκ

)
. We have studied bifurcations of this solution. The bifurcation diagram is shown

in Fig. 1a in the (g0 , q0) plane for the parameter values given in the figure caption. The
curves Hn indicate Andronov-Hopf bifurcations to time-periodic intensities with periods close to
T/n. The curve H1 corresponds to the fundamental mode-locking regime with pulse repetition
frequency close to Ω1 = 2π/T, while the curves Hn with n = 2,3,4 signal the onset of multiple
pulse ML regimes with the repetition frequencies close to nΩ1. On the other hand, HQ is an
Andronov-Hopf bifurcation with a frequency approximately eight times smaller than Ω1. This
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bifurcation is responsible for the Q-switching instability.
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Fig. 3: (a) Andronov-Hopf bifurcations of the cw solution of Eqs. (3)–(5).
(b) Branches of ML solutions bifurcating from the Andronov-Hopf bifurcation curves shown in

Fig. 1a. Solid (dotted) lines indicate stable (unstable) solutions. The branch of constant
intensity solutions is labeled cw.

Similarly to the Andronov-Hopf bifurcation curves, the branches of periodic solutions and
their stability have been calculated numerically using DDE-BIFTOOL. An example is shown
in Fig. 1b. The branch P1 corresponding to the fundamental mode-locking regime has a
stability range limited by two bifurcation points. The left one of these two points is a
secondary Andronov-Hopf bifurcation point labeled QP. This bifurcation produces a solution
with quasiperiodic laser intensity that corresponds to a mode-locking regime modulated by the
Q-switching frequency. With the decrease of the pump parameter g0 below the QP point, the
modulation depth grows for the quasiperiodic solution. Another bifurcation point, labeled SN,
is a saddle-node bifurcation where two periodic intensity solutions, one stable and the other
unstable, merge and disappear. The solutions corresponding to multiple pulse mode-locking
are labeled P2 and P3 in Fig. 1b. These solutions undergo bifurcations similar to those of
the fundamental branch P1. In a certain parameter range a bistability exists between different
mode-locking regimes.
The proposed model can be extended to study active or hybrid mode-locking and to include
additional microscopic effects, e.g., carrier heating. This model is easy to simulate and
analyze. Unlike the classical mode-locking theories developed by New and Haus it can describe
asymmetric pulses with “unstable” background that can appear in the case of large cavity losses
per pass, i.e. in a situation typical of semiconductor lasers. A derivation and a more detailed
description of the proposed model are given in [25, 26, 27].
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New features of LDSL-tool: Mode analysis (M. Radziunas).
During the last years we were considering different aspects of the traveling wave model
(a hyperbolic system of first-order one-dimensional PDEs nonlinearly coupled with ordinary
differential equations)

∂
∂t

E(z, t) = H(z,∂z,β(z,n, |E|2))E(z, t),
d
dt

N(z, t) = I(z, t)−R(z,N)−ℜe[E∗g(z,N(z, t), |E|2)E],
(6)

which describes the complicated nonlinear dynamics of the optical field and the polarization
(E(z, t) is a four-component complex vector function), and the carrier densities (real vector
function N(z, t)) in multi-section semiconductor lasers, [6, 9, 10]. Here, the operator H contains
first-order spatial derivatives ∂z and is mainly determined by the spatially distributed complex
propagation factor β. Its domain includes also the corresponding boundary conditions.
Different topics of our research such as numerical integration of the model equations, com-
putation of eigenvalues, derivation and investigation of the reduced ODE system (mode
approximation) were implemented in the software LDSL-tool (“Longitudinal Dynamics in
Semiconductor Lasers”), [6, 10, 11, 12, 13]. These potentialities turn LDSL-tool into a pow-
erful tool suited for simulations, parameter studies, and analyses of various dynamical effects
in different multi-section semiconductor lasers. The application of LDSL-tool, together with
theoretical and experimental studies, have proved to be very useful to get a better understanding
of the laser behavior as well as for designing lasers with specific properties, [7, 8, 9, 13, 14].
In what follows we report on the recently implemented capacity of LDSL-tool to perform
mode analysis (i.e. to analyze the dynamics of longitudinal modes) which allows to understand
and to predict typical dynamical behavior of the optical field E(z, t) and its power |E|2, [7,
10, 11, 13, 14]. For this reason, we decompose the computed optical field E(z, t) into modal
components that are determined by the eigenfunctions Θ(z,β) of the operator H, that is,
we solve for each computed instant distribution of the propagation factor β(z, t) the spectral
problem:

[H(β)− iΩ(β)]Θ(z,β) = 0 ⇒ E(z, t) =
∞

∑
k=1

fk(t)Θk(z,β). (7)

Here, ℜeΩ and ℑmΩ determine the modal wavelength (or angular velocity) and the damping of
the mode, respectively, [6, 7, 10, 11]. Squared modulus of the complex modal amplitudes | f (t)|2
(after an appropriate normalization of the eigenfunctions Θ(z,β)) represents the contribution of
the corresponding mode at the laser facet. Figures 4a and 4b represent results of the mode
analysis in a three-section laser with two distributed feedback sections.
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A detailed description of the mode analysis can be found in [10, 13].

Quasiperiodic regimes in multi-section semiconductor lasers (D. Turaev, K.R. Schneider).
Consider an edge-emitting multi-section semiconductor laser with k active sections. The
longitudinal dynamics of such lasers can be described by the traveling wave model reflecting
the slow dynamics of the carrier densities and the fast dynamics of the electromagnetic field

dE
dt

= H(N)E,

dNj

dt
= ε ( f j(N)−ETg j(N)E∗), j = 1, . . . ,k.

(1)

We suppose that there is a point N0 in Rk such that the operator H(N0) has k simple eigenvalues
located on the imaginary axis, while all other eigenvalues λi satisfy Re λi < κ < 0. Under these
assumptions there exists a smooth inertial manifold such that (1) represents on this manifold an
ODE system of the form

dEc

dt
= [Hc(N)− εα(N)F(Ec,N)+O(ε2)]Ec,

dN
dt

= εF(Ec,N)+O(ε2),
(2)

with Ec ∈Ck, N ∈Rk. We establish the existence of nearly identical coordinate transformations
mapping (2) into some normal form that can be viewed as a small dissipative perturbation (of
order

√
ε) of the conservative and reversible system

d2u
dτ2 = F̂(N0)− Ĝ(N0)




eu1

...
euk


 , (3)
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where |Ec,i |2 = eui , i = 1, . . . ,k.
Under some conditions, we can conclude from the existence of equilibria of system (3) to
the existence of invariant tori of system (2) for sufficiently small ε. In case k = 2 we derive
inequalities which implies the existence of an asymptotically stable invariant torus for system
(2). For more details we refer to [20].
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Multiscale systems

Collaborators: K.R. Schneider, E.V. Shchetinina, D. Turaev (until 10/03)

Project 1: Blue-sky catastrophe in singularly perturbed systems (D. Turaev).

Cooperation with: A.L. Shilnikov (Georgia State University, Atlanta, USA), L.P. Shilnikov
(Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, Russia)

One of the basic questions of dynamics concerns the structure of the regions of stability of
periodic orbits. The last known stability boundary was discovered only in 1995, [1]. It
corresponds to the so-called blue-sky catastrophe, a special case of a saddle-node bifurcation
where a saddle periodic orbit collides with a stable one, then both disappear, and a single stable
periodic orbit with very large length and period is created (the length and period tend to infinity
when the bifurcational moment is approached). The global structure of the unstable set of the
saddle-node for the blue-sky catastrophe appears to be rather complex. Nevertheless, it was
shown in [2] that this particular configuration of the unstable set is, in fact, quite typical for
singularly perturbed systems with at least two fast variables.
A singularly perturbed system, a paradigm for dynamical processes with two distinct time
scales, is a system of the form

ẋ = g(x,y,ε),
εẏ = h(x,y,ε),

where ε > 0 is a small parameter; x stands for the slow variables and y for the fast ones. The
y equation for fixed x is called a fast system. The dynamics of singularly perturbed systems
is characterized by the slow motion along the invariant manifolds corresponding to attractors
of the fast system (equilibria or periodic orbits in the simplest situation) and by fast jumps
between different such manifolds. The jumps happen at the values of x which correspond to
bifurcations in the fast system.
In this project we show ([3]) that the blue-sky catastrophe almost inevitably accompanies the
saddle-node bifurcation in the slow-fast systems, where there are jumps between invariant
manifolds corresponding to fast periodic orbits and those corresponding to fast equilibria. We
present and analyze three distinct specific scenarios which lead to the blue-sky catastrophe
in the singularly perturbed systems. These scenarios correspond to three different types of
jumps, caused either by a saddle-node bifurcation in the fast system, or by an Andronov-Hopf



4.2. RESEARCH GROUP 2 59

bifurcation, or by a homoclinic loop.

)

µ

ε

µ

µ=µ (ε)*

(

L
L+
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Fig. 1: At µ< µ∗(ε) the system has two periodic orbits: a stable orbit L+ and a saddle orbit
L−. The orbits which do not lie in the stable manifold of L− tend to L+ as time increases. At
µ> µ∗(ε) the system has a single and attracting limit cycle Lµ whose length tends to infinity as

µ→ µ∗(ε)+0.

We remark that the suggested mechanisms of the blue-sky catastrophe in singularly perturbed
systems have indeed been reported in models of neuronal activity, for example, describing the
dynamics of the leach heart interneurons ([4]). The transition (illustrated in Fig. 1) from one
type of self-sustained oscillations (a round stable periodic orbit L+) to the regime where the
attractor is the “long” stable orbit Lµ can be interpreted as a transition from periodic tonic
spikes to periodic bursting oscillations of the neuron.
Note as well that even before the transition to the bursting oscillations the spiking mode is in
an excitable state here: a perturbation which drives the initial point outside the saddle limit
cycle L− results in a long calm phase before the sustained spiking restores.
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Project 2: Exchange of stabilities in multiscale systems (E.V. Shchetinina, K.R. Schneider).

Cooperation with: V.F. Butuzov, A.B. Vasil’eva, N.N. Nefedov (Moscow State University,
Russia)

Supported by: DFG: Cooperation Project “Singulär gestörte Systeme und Stabilitätswechsel”
(Singularly perturbed systems and exchange of stability) of German and Russian scientists in
the framework of the Memorandum of Understanding between DFG and RFFI

Consider a dynamical system of the type dx/dt = f (x,λ) and assume that the parameter λ
slowly changes in time. Setting λ ≡ ετ we obtain after rescaling t the singularly perturbed
non-autonomous differential equation

ε
du
dt

= f (u, t), 0 < ε¿ 1. (1)

We suppose that the solution set f−1(0) of the degenerate equation of (1)

0 = f (u, t)

consists in the (t,u)-plane of two curves k1(u≡ 0) and k2 intersecting transversally for t = 0. If
the solution u(t,u0,ε) of (1), satisfying u(t0) = u0 for t0 < 0, exists for t > 0, then the behavior
near t = 0 can be characterized by one of the following cases:

(i) u(t,u0,ε) follows immediately the stable branch of k2,

(ii) u(t,u0,ε) follows for some O(1)-time interval (not depending on ε) the unstable part of
k1 and then jumps either to the stable part of k2 or to infinity (blowing up).

The case (i) is called an immediate exchange of stabilities, the case (ii) is referred to as delayed
exchange of stabilities or as delayed loss of stability. These cases cannot be treated by applying
the standard theory of singularly perturbed systems. In [1], [2], [3], we have developed a theory
based on the method of asymptotic upper and lower solutions to characterize and to distinguish
immediate and delayed exchange of stabilities. In the project under consideration we study
equation (1) under the assumption that the curves k1 and k2 intersect in at least two different
points. By means of the method of asymptotic upper and lower solutions we derive conditions
on f guaranteeing that the solution of the initial value problem exhibits the phenomena of
immediate as well as of delayed exchange of stabilities. It is important to emphasize that it is
not possible to prove this result by only verifying the assumptions for immediate and delayed
exchange of stabilities. In fact, we have to look for an appropriate modification of the method
of asymptotic upper and lower solutions. We also study the case that f is periodic in t. In order
to be able to prove the existence of a harmonic solution which represents a periodic forced
canard we have to construct asymptotic upper and lower solutions which are discontinuous and
contain boundary layer functions.
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Project 3: Integral manifolds loosing their attractivity (E.V. Shchetinina, K.R. Schneider).

Cooperation with: V.A. Sobolev, E.A. Shchepakina (Samara State University, Russia)

We consider slow-fast systems that can be transformed into the form

dy
dt

= εY(t,y,z,ε),

dz
dt

= B(t)z+Z(t,y,z,a(y,ε),ε)+a(y,ε),
(1)

where y∈ Rn, z∈ R2, ε is a small positive parameter, a is a two-dimensional vector function,
and B(t) is the matrix

B(t) =
(

αt β
−β αt

)
0 < α,β < +∞.

The eigenvalues of the matrix B(t) are αt± iβ, that is B(0) has purely imaginary eigenvalues,
and therefore (1) is a nonhyperbolic system.
The aim of this project is to investigate the integral manifolds loosing their attractivity and,
especially, to study their relations with the phenomenon of delayed loss of stability. In the
hyperbolic case the existence of the integral manifolds of the form z= h(t,y,ε) has been known
for a long time (see, e.g., [1]).
It is proved that under some general assumptions on the functions Y and Z, there exists a
control function a(y,ε) such that system (1) has an integral manifold z= h(t,y,ε), where h is
uniformly bounded. We note that this manifold is attractive for t < 0 and repulsive for t > 0.
We call these manifolds loosing as manifolds their attractivity.
The question of the smoothness of the integral manifold and of the control function is
investigated. By the induction method it is shown that if the functions Y(t,y,z,ε), Z(t,y,z,a,ε)
have continuous and uniformly bounded partial derivatives with respect to the variables y,z,a,ε
up to the order k, then the integral manifold h(t,y,ε) and the control function a(y,ε) have
continuous and uniformly bounded partial derivatives with respect to y up to the order k−1.
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Project 4: Maximal temperature of safe combustion in case of an autocatalytic reaction
(K.R. Schneider).

Cooperation with: E.A. Shchepakina (Samara State University, Russia)

We consider the problem of thermal explosion of a gas mixture in case of an autocatalytic
combustion reaction in a homogeneous medium. As a mathematical model we use the
differential system

ε
dΘ
dt

= η(1−η)eΘ−αΘ,

dη
dt

= η(1−η)eΘ.
(1)

Here, Θ denotes the temperature, η is the depth of conversion of the gas mixture, −αΘ
describes the volumetric heat loss, and ε is a positive parameter which is small in case of a
highly exothermic reaction. There exists an exponentially small α-interval Aε := (α0(ε),α1(ε))
containing α∗(ε), where

α∗(ε) = α0 +α1ε+O(ε2), α0 = e/4, α1 =−e/
√

2,

such that for α > α1(ε)(α < α0(ε)) belongs to the slow regime (explosive regime). The interval
Aε characterizes the critical regime. For α ∈ A, there are canard trajectories ∑α,ε(t) of system
(1) starting at Θ = Θ0 = 0, η = η0 < 0.5, and satisfying ∑α,ε(t)→ (η = 1, Θ = 0) as t →∞. Our
goal is to estimate the maximal temperature Θε

max of the canard solution ∑α,ε(t) for α = α∗(ε)
and ε sufficiently small. We derive an estimate and an asymptotic relation for Θε

max as ε→ 0
by means of a result on delayed exchange of stabilities in singularly perturbed systems derived
by one of the authors ([1]).
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4.3 Research Group Numerical Mathematics and Scientific Computing

4.3.1 Overview

Die Forschungsgruppe erarbeitet numerische
Verfahren für Systeme von partiellen Differen-
tialgleichungen und Algebro-Differentialglei-
chungen, analysiert diese Methoden und wen-
det sie auf relevante Fragestellungen der Pra-
xis an. Dabei sind die Forschungen naturge-
mäß langfristig angelegt. Besondere Bedeutung
kommt der Entwicklung und Implementierung
numerischer Software zu. Hier stellt die For-
schungsgruppe moderne und effiziente Werk-
zeuge bereit.

The group develops numerical procedures for
systems of partial differential equations and
differential–algebraic equations, analyzes these
methods, and applies them to practical prob-
lems of interest. The research projects are,
by their nature, long-term studies. Of partic-
ular importance is the development and im-
plementation of numerical software, to which
the group creates and provides modern and
efficient tools.

Die Methoden bewähren sich bei konkreten
Anwendungen in Projekten mit Partnern aus
der Industrie und experimenteller Forschung.
Diese Kontakte wiederum stimulieren weitere
mathematisch-numerische Forschungen.

The methods are applied to real-world prob-
lems in collaborative projects with part-
ners from industry and experimental re-
search. These contacts in turn stimulate further
mathematics-based numerical research.

Die thematischen Schwerpunkte waren: The main research topics were:

• Numerische Verfahren und Software-
komponenten für die Lösung von Sys-
temen partieller Differentialgleichungen,

• Simulation von Höchstfrequenzschaltun-
gen,

• Statische und dynamische Simulation
verfahrenstechnischer Prozesse.

• Numerical procedures and software mod-
ules for the solution of systems of partial
differential equations;

• Simulation of high-frequency circuits;

• Stationary and dynamic simulation in
process engineering.

Ein Schwerpunkt der Arbeiten in der For-
schungsgruppe im Jahre 2003 war die Über-
arbeitung des Designs der Toolbox pdelib
zur numerischen Lösung partieller Differenti-
algleichungen.

The new design of the toolbox for solving
partial differential equations pdelib2 was
one of the objectives the group focused on.

pdelib2 ist als nochmals verbesserte Brücke
zwischen neuen algorithmischen Entwicklun-
gen und deren effizienter Implementierung in-
nerhalb und außerhalb des WIAS und Anwen-
dungen gedacht.

pdelib2 is designed to bridge the gap be-
tween new algorithmic developments and their
fast and efficient implementation inside and
outside WIAS.
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pdelib2 bietet Programmierschnittstellen
zu Geometriebeschreibung, Gittergenerierung,
paralleler Assemblierung, Lösungsverfahren
für lineare und nichtlineare Probleme, sowie
interaktiver Visualisierung, welche es dem Nut-
zer erlauben sollen, sich auf den problemspe-
zifischen Code zu konzentrieren.

pdelib2 offers interfaces to describe geome-
tries, generate grids, assemble functions and
Jacobian matrices in parallel, and solution pro-
cedures for linear and nonlinear equations. To-
gether with the interactive visualization possi-
bilities pdelib2 will allow the user to stay
focused on her or his special application code.

Neue Features sind u. a. New features:

• Cache-Effizienz und Parallelisierung für
Shared-Memory-Architekturen auf der
Basis spezieller Gitterpartitionierungen,

• Einbindung der Gittergeneratoren trian-
gle (2D, J. R. Shewchuk, University of
California, Berkeley) und TetGen (H. Si,
WIAS Berlin),

• Basis-Datenstruktur für alle algorith-
misch relevanten Objekte sind ein- oder
zweidimensionale Felder. Damit lassen
sich alle diese Objekte aus verschiede-
nen Programmiersprachen ansprechen.

• Ein großer Teil der Programmierschnitt-
stellen ist sowohl in C als auch in der Ex-
tensionssprache Lua vorhanden, um eine
einfache Problembeschreibung mittels ei-
ner Skriptsprache zu ermöglichen.

• Improved cache efficiency and portable
parallelization for shared memory archi-
tectures using special grid partitioning
and coloring algorithms;

• Integration of grid generators: triangle
(2D, J.R. Shewchuk, University of Cali-
fornia, Berkeley), TetGen (H. Si, WIAS
Berlin);

• Multilingual support, the basic data struc-
tures for all objects relevant for any algo-
rithm are one- or two-dimensional arrays,
that guaranties freedom of choice for pro-
gramming languages per algorithm;

• A large fraction of the interfaces is de-
fined in C and the extension language
Lua, to make problem description easily
possible by using a scripting language.

In der Forschungsgruppe werden zudem die
folgenden institutsweiten Querschnittsaufgaben
bearbeitet:

In addition, the group works on the following
cross-sectional tasks:

• Aktive Unterstützung anderer Gruppen
bei der numerischen Umsetzung von Pro-
jekten mit pdelib, z. B.

• Active support for other groups in con-
verting mathematical problems to forms
compatible with pdelib, e.g.,

– Numerische Simulation und Optimie-
rung der Züchtung von SiC-Einkristallen
durch Sublimation aus der Gasphase (sie-
he S. 40),

– Numerical simulation and optimization
of SiC single crystal growth by sublima-
tion from the gas phase (see page 40);

– Spannungsanalyse in einer dünnen
Wafer-Platte,

– Stress analysis of a thin wafer plate;

http://www.wias-berlin.de/~pdelib
http://www.wias-berlin.de/~pdelib
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– Optimierung diffraktiver Strukturen
und Rekonstruktionsmethoden für stark
schlechtgestellte Probleme (siehe Seite
101).

– Optimization of diffractive structures and
reconstruction methods for severely ill-
posed problems (see page 101).

• Entwicklung spezieller Moduln und Fea-
tures für pdelib, allgemeine Beratung
in numerischen Fragen,

• Gittergenerierung,

• Visualisierung.

• Development of special modules and fea-
tures for pdelib, general advice for
questions on numerical issues;

• Grid generation;

• Visualization.
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4.3.2 Projects

Algorithms for the solution of the semiconductor device equations in three dimensions
with application to DEPFET sensor design

Collaborator: K. Gärtner

Cooperation with: R. Richter (Halbleiterlabor (Semiconductor Laboratory), Max-Planck-
Institut für Physik, München, und Max-Planck-Institut für extra-terrestrische Physik, Garching)

The main goal is the development of improved algorithms for the numerical solution of
degenerate systems of elliptic and parabolic partial differential equations based on discretizations,
fulfilling qualitative stability properties, known from the analytic equations, too.
The semiconductor device equations can be seen as an example out of a much larger class
of problems, but they are well understood in many respects, sufficiently hard to solve and of
practical interest—hence a good candidate to deal with. The interest starts with grid generation,
includes properties of the equations and their discretization, effective algorithms for the solution,
and ends with solving some selected real-world problems.
The present status of the work is roughly characterized by:

• A basic level of the models (for recombination, transport phenomena, etc.);

• A general geometry and boundary descriptions using tetrahedral Delaunay grids;

• Three different Newton methods based on different decoupling techniques together with
the use of iterative and direct simulation methods (PARDISO, see page 69) to solve the
stationary equations and to compare their efficiency and robustness;

• The use (expansion) of 2D numerically given doping profiles is possible now.

The present results are:

• A 3D prototype code (SMP parallel in the essential parts, using a completely weak
formulation of the finite volume discretization) for discussing and investigating some
issues of interest in the more general pdelib2 (see page 96) design, including basic
algorithms;

• The transfer of specific algorithms to WIAS-TeSCA;

• And some contribution by “insight” into computed potential and density distributions to
the design of a DEPFET sensor at the Semiconductor Laboratory in Munich.

To illustrate the status from the application point of view, a summary of the device function is
given: the DEPFET combines detection and amplification within one device, [1]. A p-channel
MOSFET or JFET (junction field effect transistor, contacts SOURCE, GATE, DRAIN) is
integrated onto a silicon detector substrate, which becomes fully depleted by the application of
a sufficiently high negative voltage to a backside p+ contact (BACK). By means of sideward
depletion, a potential minimum is formed which is shifted directly underneath the transistor
channel at a depth of about 1µm below the GATE contact. Incident photons and particles
generate electron-hole pairs within the fully depleted bulk. While the holes drift into the back
contact, electrons are accumulated in the potential minimum, called the internal gate. The

http://www.wias-berlin.de/software/tesca
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resulting change of the JFET current is a measure of the collected amount of charge and the
deposited energy, respectively.
The readout of the device is non-destructive and can be repeated several times. For removing
signal electrons and thermally generated charges from the internal gate, a clear structure is
integrated into the device (contacts CLEAR and CLEAR-GATE). The efficiency of the clear
process determines the readout noise essentially. Understanding this process is the point where
3D device simulations enter. Due to the very low input capacitance the inherent noise during
amplification becomes very low. Equivalent noise charges of about two electrons were measured
at room temperature on recently fabricated structures.
DEPFET detectors can be applied for XRAY spectroscopy, e.g., in space or biomedical
experiments ([2], [3]) as well as for particle detection, for instance, in vertex detectors ([4]).
The pictures (generated by gltools) show the electron and hole density (log10) in a section
of a sensor element. The grid is highly anisotropic and has a resolution of order 10 nm close
to the contacts. The computational domain of 18x28x50 µm3 size is discretized by 156000
nodes. The numerical challenges are introduced by the floating regions and the very small
recombination, resulting in density variations of 25 orders of magnitude.
The I-V curves show some properties of the detector for different boundary and doping
conditions. The device performance depends strongly on doping concentration, geometric
parameters, and boundary conditions.
Numerical challenges for the future are, for instance, faster algorithms to allow higher resolution
and time-dependent computations on better grids (TetGen, see page 71). Investigations of the
interaction of two or more pixel sensor elements may be another task introducing a new level
of complexity.
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Fig. 1: I-V curves (top), log10 of the electron (middle) and hole densities (bottom) at the top
and a vertical cut (cut at y = 14 µm, grey relief) of the detector.

(The contact areas on top of the device can be identified by the following codes (e, h: color), where e
denotes the electron density and h the holes density pictures above: CLEAR (e: red), CLEAR-GATE

(e, h: light blue), DRAIN (in the cut of region), GATE (h: orange), SOURCE (h: red), floating region
(h: yellow).)
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Optimization of the sparse direct solver PARDISO for use in the Intel Math Kernel
Library

Collaborator: K. Gärtner

Cooperation with: O. Schenk (Universität Basel, IFI, Switzerland), B. Greer (Intel Corpora-
tion, Hillsboro, Oregon, USA)

After passing the evaluation process at Intel Hillsboro, the incorporation of the solver into the
Intel Math Kernel Library (MKL) was stated as project goal. The interplay of PARDISO [1, 2,
3] with the Intel compilers and other Math Kernel Library routines (especially BLAS3 routines)
was further improved. Intel took care of the questions arising from the programming interface
conditions of the MKL and the problems related to redistributing the libraries for different
processors and operating systems.
A MKL user interface introducing an additional abstraction layer is provided and, for experienced
users, the original one is maintained, too. Because PARDISO involves large sets of matrices
with very different sizes, it will be used as one of the performance measurement tools at
Intel. Future MKL development will particularly pay attention to the behavior in a parallel
environment and will assure that especially the DGEMM implementation works as well as
possible for small and large matrices.
Just now in January 2004 Intel announced the β release of PARDISO within MKL
(see http://www.intel.com/software/products/mkl/beta/features.htm).
The distribution via the vendor library will benefit internal simulation needs and provide users
outside academia with a stable code basis.

height = 262

Fig. 1: Elimination tree after permutation for four processors

http://www.intel.com/software/products/mkl/beta/features.htm
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Three-dimensional Delaunay mesh generation

Collaborators: H. Si, J. Fuhrmann, K. Gärtner

Mesh generation is one of the crucial points for many applications of numerical methods to
real-world problems. The purpose of this research at WIAS is to provide a reliable and efficient
three-dimensional mesh generation tool based on the up-to-date technologies, including newly
developed algorithms. TetGen, a 3D Delaunay mesh generator and TetView, a geometry and
mesh visualization and debugging program shall be reviewed here.

TetGen TetGen is a 3D tetrahedral mesh generator. It creates tetrahedral meshes conforming to
the Delaunay criteria (so-called conforming Delaunay tetrahedralizations, or CDT) for arbitrary
3D domains with piecewise linear boundary. It has various options to refine CDTs and produces
high-quality Delaunay meshes which are suitable for finite element and finite volume methods.
TetGen is written in C++. It is freely available at http://tetgen.berlios.de (open source). A
lot of people are interested in using TetGen (about 150 downloads per month). Clearly, this
produces feedback and contacts from all over the world. Very different applications and the
related requirements contribute to quality improvement.
In the year 2003, the development of TetGen can be divided into two parts: the release of
version 1.2c, and the development of new meshing algorithms.
TetGen Version 1.2c is an improved version of version 1.2, especially with respect to stability
and efficiency. In detail, it has the following features:

• Improved algorithms for geometric predications using finite precision arithmetic;

• Detection and handling of two degenerate cases: cospherical points, coplanar points;

• The input/output user interface “tetgenio” was complemented;

• A new boundary edge recovery algorithm for constrained Delaunay tetrahedralization was
included;

• Various quality checking and refinement routines have been added to improve the quality
of the resulting mesh.

TetView TetView is a 3D mesh and geometry viewer. It can be used to view and manipulate
tetrahedral meshes and surface triangular meshes. It views geometries like piecewise linear
complexes, too. The driving force for developing TetView is the need for efficient visualization
working on algorithmic issues of TetGen. TetView is distributed in executable form for many
operating systems. Figure 3 shows the interactive graphical user interface of TetView. It uses
OpenGL as the kernel for efficiently rendering 3D objects. Experienced users can exploit the
scripting possibilities provided by Lua to generate animations. The WIAS tools LDF (Lua Data
Framework) and gltools provided the basis for the TetView development.

http://tetgen.berlios.de
http://www.wias-berlin.de/software/gltools
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Fig. 1: Mesh of a crystal growth apparatus. (a) shows the input model (a piecewise linear
complex) with different boundary markers; (b) the resulting mesh (cut in the middle to show a
view accordingly to (a), different materials are displayed in different colors; the model is due

to the WIAS crystal growth simulation project, see page 40).

Fig. 2: Quality mesh of a geological model of volcano Merapi (Java/Indonesia, model
provided by C. Rücker, Institute for Geophysics and Geology of the University of Leipzig).
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Fig. 3: Example view of the graphic user interface of TetView
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Process simulation in gas turbine engineering

Collaborators: J. Borchardt, F. Grund, D. Horn

Cooperation with: D. Zeitz (ALSTOM (Switzerland) Ltd., Baden)

Supported by: ALSTOM (Switzerland) Ltd., Baden

Like in many other process industries, the numerical process simulation plays an important
role in today’s gas turbine engineering. Here, the simulation is used for process design, safety
management, efficient operation and control of single components of industrial gas turbines
(Fig. 1) as well as entire combined-cycle power plants. In complex and highly nonlinear
modeling, large-scale simulation problems may arise. Thus, using concentrated physical
models, high-dimensional systems of nonlinear or differential–algebraic equations (DAEs) have
to be solved in static or dynamic process simulation, respectively. For their solution, robust and
fast numerical simulation tools are needed.

Fig. 1: Industrial gas turbine (source: www.power.alstom.com)

At the Weierstrass Institute we have developed a simulation concept which exploits the modular
structure of the process, that in most cases corresponds to the hierarchical unit structure of
the underlying plant (see, e.g., the right part of Fig. 2). With it the corresponding system
of equations is structured into subsystems according to the units and can be portioned into
blocks, which can then be treated almost concurrently within appropriately modified numerical
methods. The approach is based on divide and conquer techniques and has been implemented
in the Block Oriented Process simulator BOP that uses an own compiler to generate a
hierarchically structured data interface from a process description with its modeling language
MLPE (Modeling Language for Process Engineering). Within this approach a block-partitioned
system of equations

Fj(t,Yj(t),Ẏj(t),U j(t),U̇ j(t),u(t)) = 0, j = 1(1)p,

Fj :R×Rmj ×Rmj ×Rn−mj ×Rn−mj ×Rq→Rmj ,
p

∑
i=1

mj = n, t ∈ [t0, tend]

is solved, where the vectors Yj(t) and U j(t) denote the unknown and coupling variables of
the blocks, respectively, and u(t) the parameter functions. For static problems the system of
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DAEs degenerates to a system of nonlinear equations. Efficiently parallelizable block-structured
Newton-type methods, [1], can be applied in both cases.
In the period under report, the simulation approach of BOP was successfully adapted to
the process simulation of industrial gas turbines. Improvements of the numerical methods
in combination with a more efficient implementation have led to a remarkable speedup of
simulation time in this field. Simulations of numerous industrial gas turbine problems have
shown that the simulation runs with BOP are between two and five times faster than those
performed with the Aspen Custom ModelerTM (ACM), a worldwide leading commercial
simulation tool of Aspen Technology (USA). For about 95 % of these simulation problems,
the steady state solution was found with the standard numerical control parameters of the
BOP solver. In almost all of the remaining cases, the solution was found after modification
of some control parameters. After the implementation of a subset of the modeling language of
ACM, BOP can now handle three different types of model descriptions. Beside a description
with MLPE, descriptions with language subsets of SPEEDUP and ACM are possible as well,
where the two subsets correlate to the scope of MLPE. Additionally, we implemented techniques
that allow an exchange of parameters (fixed) and variables (free) of a simulated process without
the necessity either to generate a new data interface or to recompile model functions before
a new simulation run of the modified sample can be performed. This holds also for repeated
fixed-free changes.

Fig. 2: Graphical user interface SuperGAU and a modular model of a gas turbine
(ALSTOM (Switzerland) Ltd.)

As a result of these achievements, a license of the simulator has been sold to ALSTOM
(Switzerland) Ltd., a leading gas turbine producer. Currently, BOP is used here for single
steady state simulation as well as parameter verification problems. It runs under the Windows
XP operating system on PCs, where it is called by the graphical user interface SuperGAU (see
the left part of Fig. 2) developed by our cooperation partner at ALSTOM Power.
Lately, a second contract between WIAS and ALSTOM has been signed which aims at an
enlargement of the functionality of BOP as well as a further adaptation to industrial needs. In
this context we started the implementation of advanced elements of the modeling language of
ACM, which are currently not included in MLPE. Beside this we provided the simulator with a
Java Native Interface (JNI) and a binary input/output. The interface is needed for a direct data
transfer between the Java GUI and the simulator, now realized by a dynamic link library.
The numerical methods realized within BOP require a repeated solution of linear systems with
the same pattern structure of sparse, unsymmetric coefficient matrices. This is done with an
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adapted version of our linear solver GSPAR, [3], which uses a modified Gaussian elimination
with column reordering, partial pivoting, and pseudo code generation for refactorization (so-
called fast second factorization). The basic (non hierarchical) version can be used as a
stand-alone linear solver as well. Its newest version GSPAR2 has recently been compared
with the solver UMFPACK Version 4.1 (Apr. 30, 2003) (Timothy A. Davis, CISE Department,
University of Florida, USA). Results concerning the computing time on an HP AlphaServer
GS1280 7/1150 are given in Table 1. For the linear systems with matrices arising from different
real-world applications, the numbers N and NNZ denote the order and the number of nonzeros
of the coefficient matrix, respectively.

Table 1: CPU times (in sec.) for factorization using GSPAR2 and UMFPACK V4.1

GSPAR2 UMFPACK V4.1

Matrix First Fast second Symbolic Numeric
N NNZ Factoriz. Factoriz. Factoriz. Factoriz.

bayer01

lhr34c

circuit_4

shermanACb

57 735

35 152

80 209

18 510

277 774

764 014

307 604

145 149

0.696

4.977

1.202

0.211

0.105

1.042

0.035

0.034

0.32

0.53

2.65

0.13

0.45

0.83

2.20

0.27
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Numerical simulation of non-Newtonian fluids of Oldroyd type

Collaborator: N.D. Scurtu

This work is realized in the framework of my dissertation under the supervision of Prof. Dr.
E. Bänsch. In nature, there are many fluids that do not satisfy the Newtonian constitutive law.
This is also the case of many fluids created for industrial purposes. Fluids like multi-grade
oils, liquid detergents, shampoos, dyes, adhesives, biological fluids like blood, paints, greases,
printing inks, industrial suspensions, polymer solutions, and polymer melts, fall within the
category of non-Newtonian fluids.

The numerical simulation of many industrial problems has been carried out using viscoelastic
models of the Oldroyd kind. The aim of this work is to develop a mixed finite element method
for the computation of instationary, incompressible non-Newtonian fluid flow. Viscoelastic
fluid models of Oldroyd type are considered. The dimensionless constitutive, momentum, and
continuity equations, respectively, for the Oldroyd fluid model are:





We

(
∂τ
∂t

+(u ·∇)τ+βa(τ,∇u)
)

+ τ−2αD = 0

Re

(
∂u
∂t

+(u ·∇)u
)
−2(1−α)divD−divτ+∇p = f

divu = 0

where βa(τ,∇u) := 1−a
2 (τ∇u+∇uTτ)− 1+a

2 (∇uτ+ τ∇uT), a∈ [−1,1]

(a = 1 corresponds to the Oldroyd-B model).

The unknown fields are the symmetric stress tensor τ : R+×Ω −→ RN2

s , the velocity field
u :R+×Ω−→RN, and the pressure field p :R+×Ω−→R, where Ω⊂RN , N = 2,3.
Initial conditions and boundary conditions of Dirichlet type for the velocities and a condition
for the stresses on the upstream boundary section have to be added.
Three parameters characterize the flow: the Reynolds number Re≥ 0, the fraction of viscoelastic
viscosity α ∈ [0,1], and the Weissenberg number We≥ 0. This system includes the Navier-
Stokes system as a particular case (We= 0,α = 0), so it is favorable to develop a numerical
method which can generalize an existing one used for the Navier-Stokes system.

There are two aspects which must be discussed for this system: the finite element spatial
discretization and the time discretization.
The solution of Oldroyd’s problem by the finite element method presents a difficulty due to the
hyperbolic character of the constitutive equation.
This hyperbolic character implies that some upwinding is needed. The choice of the upwinding
technique depends on the choice of the finite element space used to approximate τ. Since no
continuity requirement is needed on τ at interfaces between elements, as shown in [2], this will
be done by using the discontinuous Galerkin method, which allows the computation of each
component of τ on an element-by-element basis. For fixed τ the last two equations are a Stokes
system in the variables u and p. To solve the Stokes system, a mixed finite element method was
used: the stable Taylor-Hood element on unstructured simplicial grids, i.e. piecewise-quadratic
basis functions for the velocity and piecewise-linear for the pressure.
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Major numerical problems for the instationary Oldroyd system arise due to the incompressibility
condition, the strong nonlinearity in the momentum equation, the transport of the stress, the
strong coupling of the unknowns, and stability versus accuracy of the numerical scheme.
The decoupled computation of stress, velocity, and pressure is performed with an algorithm
involving a time approximation based on the fractional θ-scheme ([3]) and on the splitting
method introduced by Saramito ([6]). As an operator splitting method, the θ-scheme was used,
e.g., by Bänsch for the Navier-Stokes equations ([1]). The method consists of splitting each
time interval [tn, tn+1] of length ∆t into three subintervals [tn, tn +θ∆t], [tn +θ∆t, tn +(1−θ)∆t],
and, [tn +(1−θ)∆t, tn+1], and integrating the equations on each of these subintervals.

For the Navier-Stokes equations this scheme is second-order accurate, non-dissipative, and
A-stable. Stability and convergence analysis of the fractional step θ-scheme for the unsteady
Navier-Stokes equations are proven in [4] and [5]. Due to the complexity of the splitting
method for the Oldroyd system, only the stability in the linearized case could be proved. The
spectral analysis of the splitting scheme for the linearized equation system in Fourier space
shows very good properties of this scheme ( ξ = wave vector):

• (local) stability: the eigenvalues of the asymptotic damping factor fulfill |λi(∆t, |ξ|)| ≤ 1;

• strong stability: the eigenvalues fulfill

– lim∆t→∞ |λi(∆t, |ξ|)|< 1 , ξ is the wave vector,

– ∀ε > 0 ∃∆t0, ξ0 : |λi(∆t, |ξ|)| ≤ q+ ε, q < 1 ∀∆t ≥ ∆t0, ∀|ξ| ≥ |ξ0|;

• accuracy: second-order accurate if θ = 1−
√

2
2 , else only first-order accurate.

For the numerical realization of the algorithm, the following subproblems and solvers are used:
in the first and third step, a Stokes problem (CG), for the second step, a Burgers-like subproblem
(GMRES) and a stress-transport problem (GMRES discontinuous Galerkin FEM scheme) are to
be solved.
To prove the correctness of the algorithm implementation, the experimental order of converges
(EOC) was calculated. The EOC is defined by:

EOCh :=
ln( Errh

Errh/2
)

ln(2)
, with errors Errh = lim

t→∞
‖u(·, t)−uh(·, t)‖ and grid size h.

The table below contains EOC tests for different norms of the unknown of the Oldroyd system.
The numerical results are presented for two examples. For each example, computations with
Re= 1.0, α = 0.89, and different values of We are presented. ‖ · ‖dg is the norm used in the
discontinuous Galerkin method for error estimation.

We ‖p− ph‖L2 ‖p− ph‖H1 ‖u−uh‖L2 ‖u−uh‖H1 ‖τ− τh‖L2 ‖τ− τh‖dg

1.0 2.2563 1.1283 2.3071 1.3095 2.1580 1.6599
4.0 2.4671 1.1959 2.3036 1.3586 2.1354 1.6317

40.0 2.1266 1.0343 2.5759 1.5868 2.0295 1.4994

0.5 2.0734 1.0306 2.7892 1.7899 2.1941 1.8746
1.0 2.1578 1.078 2.9616 1.9939 2.036 1.5056

10.0 2.2528 1.1113 3.4107 2.5078 2.0345 1.4937
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The numerical algorithm is implemented in ALBERT, an adaptive hierarchical finite element
toolbox ([7]).
The described method is applied to the computation of the flow in a plane 4:1 contraction,
subject to specified boundary conditions. Such a flow is of interest from both a theoretical and
a practical point of view (e.g., in relation to polymer processing problems). Experiments show
increasing recirculating zones when the Weissenberg number Weincreases. Similarly growth of
the recirculating zones may be expected also in numerical experiments.
Figure 1 shows the streamlines in the upper half part of the 4:1 contraction flow and Figure 2
the recirculating zone in the right upper corner.

Fig. 1: Streamlines

Fig. 2: Streamlines in the right upper corner
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Two-phase flow with evaporation

Collaborators: R. Krahl, E. Bänsch

Cooperation with: M. Dreyer (Universität Bremen, ZARM), M. Adamov, M. Lozano Avilés
(Technische Universität Berlin)

Supported by: BMBF-DLR: “Treibstoffverhalten in Tanks von Raumtransportsystemen —
Comportement des Ergols dans les Réservoirs”

The prediction of the dynamic behavior of liquids with free capillary surfaces in partly filled
containers is of importance for the construction of space vehicles using liquid propulsion. In
the case of cryogenic propellants, this behavior is influenced to a large extent by thermal
effects, such as evaporation. As a first step for simulations, a model for two-phase flow with
evaporation has been developed.
To model the situation mathematically, balance equations for mass, momentum, and energy in
the bulk of the phases and on the phase boundary, respectively, were established, assuming gas
and liquid to be incompressible Newtonian fluids and using the Boussinesq approximation to
model buoyancy. In the bulk of both phases this leads to the Navier-Stokes equations with
convection-diffusion equations for heat and vapor:

ρ(∂tu+u ·∇u)−µ∆u+∇p = ρg−ρβT(ϑ−ϑ0)g, (1)

∇ ·u = 0, (2)

ρcp(∂tϑ+u ·∇ϑ)−λ∆ϑ = τ : (∇u), (3)

∂tρv +u ·∇ρv− ς∆ρv = 0. (4)

On the phase boundary, we get the following jump conditions:

[ρ(u ·n−uΓ)] = 0, (5)

[ρu(u ·n−uΓ)−Tn] = −(σ(∇S·n)n−σT∇Sϑ), (6)

[ρcpϑ(u ·n−uΓ)−λ∂nϑ] = jΛ, (7)

ρv(ug ·n−uΓ)− ς∂nρv = j. (8)

Further conditions are needed to determine the evaporation rate j . Thus, we add the assumption
that the temperature ϑ is continuous and is always equal to the saturation temperature ϑeq

given by the partial pressure of vapor ψ(ϑ,ρv) on the phase boundary. Note that in a precise
physical sense this assumption is contradictory to a non-vanishing evaporation rate, since it is
the statement of equilibrium. However, the difference ϑ−ϑeq is negligible in many practical
cases. This assumption yields a Dirichlet boundary condition for the temperature in both phases
that is sufficient to solve the heat transport equation (3). Equation (7) may then be used to
calculate j . This approach results in a fully coupled two-phase flow problem.
In general, viscosities in gas are much smaller than in liquid and thus Tgn¿ Tl n. Using this
assumption, one may decouple the flow problems from both phases by neglecting the shear
stresses from the gaseous phase on the boundary. The flow from the gaseous phase does not
have any direct influence on the shape of the free surface then. The flow problems in the two
phases are only weakly coupled by the temperature and the mass flux.
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Thermocapillary instability in full-zone liquid bridges

Collaborator: D. Davis

Cooperation with: F. Smith (University College London, UK)

This work has addressed some aspects of the stability of steady axisymmetric melt flows
occurring in cylindrical floating-zone configurations, and is the continuation of a project
first described in the WIAS 2001 yearly report ([1]). The initial aim of the project was to
investigate flow and thermal effects nonlinearly for low Prandtl number (Pr) within a sub-critical
framework. In [2] full numerical results from direct simulation (based on solving the unsteady
incompressible axisymmetric Navier-Stokes and heat-transport equations) were presented for a
wide range of domain aspect ratios; it was found that for both sufficiently “wide” domains (that
is, having a radius-to-height ratio rc exceeding 2, roughly) and “narrow” domains (rc < 0.3,
approx.) the results showed very good agreement with corresponding results obtained from
(asymptotically) reduced models in each case.
Moreover, the (slender-flow) approximation for narrow domains provided considerable insight
into the structure of the flow solution, especially in the case of Marangoni convection under
zero buoyancy; as the thermo-capillary stress (proportional to the dynamic Reynolds number,
ReD) is increased at the liquid/gas interface, a strong jet-like flow regime is found to emerge
around the mid-zone, where the two counter-rotating, axially-aligned tori (which characterize
the basic flow) merge.

Fig. 1: Sub-critical mid-zone-analysis result from a slender-flow model depicting scaled local
pressure gradient (q) versus scaled dynamic Reynolds number (AM), in the left-hand plot;

radial profiles of radial (ũ) and axial (w̃) velocity components at the mid-height on the upper
(‘+’) and lower (‘-’) branches, for AM = 2.43, in the right-hand plot; see [2] for further details.

Numerical analysis of the (nonlinear) reduced-model mid-zone equations reveals several impor-
tant properties: (a) if the system has a solution, then it is not generally unique; (b) the flow
cannot remain steady and axisymmetric, beyond a critical value of AM := r3

cReD (≈ 3.31), the
scaled dynamic Reynolds number (see Fig. 1). However, the (transient) DNS solutions were
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found to be exclusively “upper branch” in type, regardless of the initial conditions used, which
would seem to suggest that the “lower branch” is a less probable solution form, in practice.
To investigate the possible solution forms beyond the critical Reynolds number, a series of
supercritical flows were simulated (with a fixed Prandtl number of 0.02 and zero buoyancy).
The following variational system

d
dt

Z
Ω

u ·v dΩ+
Z
Ω

∇u : ∇v dΩ−
Z
Ω

p∇ ·v dΩ

+
Z
Ω

[(u ·∇)u] ·v dΩ−
Z

ΓLG

(u · êθ)(v · êθ) dS = −ReDrc

Z
ΓLG

∇TD ·v dS (1a)

Z
Ω

(∇ ·u)w dΩ = 0, (1b)

d
dt

Z
Ω

TX dΩ+
1
Pr

Z
Ω

∇T ·∇X dΩ+
Z
Ω

[(u ·∇)T]X dΩ = 0, (1c)

which is derived from the governing equations and boundary conditions for the floating-zone
configuration ([2]), was solved by a standard finite element method using P2−P1 Taylor–Hood
tetrahedra. To discretize in time, a three-step operator-splitting scheme for the momentum part,
combined with a Crank-Nicholson scheme for the heat transport equation, was applied. Here Ω
denotes the volume of melt while ΓLG is the liquid-gas interface; also u is the melt velocity,
p the melt pressure, T the melt temperature, TD the (imposed) temperature on ΓLG, and t
time, whereas v, w, and X are appropriate test functions. Our numerical results have indicated
that the melt flow undergoes a transition from a steady axisymmetric state to a non-oscillatory
three-dimensional one, for any given aspect ratio of the bridge. This result is wholly consistent
with well-established half-zone results ([3], [4]) and suggests that certain characteristics of the
instability mechanism are essentially unchanged for the more realistic full-zone model.
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Fig. 2: Fourier-mode transient behavior for ReD = 2500 , Pr = 0.02 , rc = 0.5 indicating the
coefficients of axial velocity

((r,z) = (0.5,0.25) blue solid line, (0.5,0.5) red dash line, (0.5,0.75) green dash-dot line.)
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In Figure 2, computational results are shown for ReD = 2500, Pr = 0.02, and rc = 0.5 with
TD ≡ sin(πz) and a zero solution as input. The transient behavior of the Fourier (angle)
modes for axial velocity at selected points in the domain is mainly portrayed, and from these
plots several distinct phases are discernible: (a) the switch to an (unstable) axisymmetric state,
at the start; (b) the brief, dominant linear growth of the m = 2 mode; (c) the subsequent
weakly-nonlinear interaction of the m= 0 and m= 2 modes, which stabilizes both modes; (d)
the later linear growth of the m= 1 mode, leading to a significantly asymmetric state. From
numerical linear instability analysis for half zones ([3], [4]), it is known that for aspect ratios
lying between 0.3 and 0.68 approximately, the m= 2 mode dominates, which is consistent with
the example shown; moreover, in general, the azimuthal number of the most dangerous mode
tends to increase with increasing aspect ratio, again in line with half-zone findings.
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Two- and three-dimensional unsteady melt-flow simulation in Czochralski InP crystal
growth

Collaborators: E. Bänsch, D. Davis, H. Langmach, G. Reinhardt

Cooperation with: K. Böttcher, W. Miller, U. Rehse (Institut für Kristallzüchtung (IKZ)
Berlin)

As a result of recent semiconductor technology, there is currently much interest in the growth
of high-quality indium phosphide (InP) crystals. This is especially true in the fields of
optoelectronics and radio frequency electronics. There it is known, for example, that InP-based
electronic components can perform much more efficiently than the hitherto favored gallium
arsenide (GaAs) or silicon, mainly because InP can operate at higher frequencies.
Since May 2003 we have been engaged in a collaborative project with the Institute for
Crystal Growth (IKZ) in Berlin, which has involved comparison of 2D and 3D numerical
transient-flow simulations performed with different solvers at each institute, as a precursor to
experimental growth using the vapor-pressure-controlled Czochralski (VCz) equipment at IKZ
(http://www.ikz-berlin.de/groups/ag.czhl/pview.php?lang=EN&opt=0&no=07). This method of
growth is a variant on the liquid-encapsulated Czochralski (LEC) growth method; an important
additional feature of the VCz method is that the crystal, melt, and encapsulant are placed in an
insulated inner chamber, which can significantly reduce potentially damaging thermal stresses
within the grown crystal. We have previously applied the method to modeling the growth of
GaAs crystals, as documented in last year’s report [1]. Subsequent results can be found in
[2], [3]. A similar model to the one described therein can be applied to InP growth, i.e. the
liquid mechanics are again described by a coupled thermo-hydrodynamic system comprising
the incompressible Navier-Stokes equations and the heat-transport equation. A fundamental dif-
ference applies to the boundary conditions for temperature, specifically on the encapsulant/melt
interface ΓE and the crucible wall ΓC. For the InP study, we have applied a Dirichlet condition
on both boundary sections, based on advection-free global simulation data supplied by IKZ.
This contrasts with the more simplified conditions of adiabaticity on ΓE and Dirichlet value
dependence derived from simple functions on ΓC, as assumed for the GaAs study.

RC 76.7 mm ν 1.62×10−7 m2/s
ρ 5.05×103 kg/m3 δT 1 K

ΩC up to 30 rpm ΩX up to 15 rpm

Pr 0.015 Ro 1

Table 1: Geometric/parametric values used to simulate Czochralski InP growth

In our mathematical model, the flow variables are non-dimensionalized in a standard fashion,
mainly using the crucible radius RC (as characteristic length), the melt kinematic viscosity ν,
the melt density ρ, the temperature difference δT between the crystal/melt interface ΓX and the
rim of the crucible, and the angular velocities of the crystal and crucible (ΩX and ΩC, in turn).
Industry-relevant values of these quantities are shown in Table 1 above, as well as the Prandtl
number Pr and thermal Rossby (or Richardson) number Ro. Finally, a non-dimensional crystal
radius rX = 0.5 and a non-dimensional height hT = 0.6 were chosen. As with the GaAs project,
we have performed computations using both cylindrical and realistic geometry. Also our initial
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efforts have been directed towards the case of iso-rotation, with ΩC = ΩX, and this holds for
the examples shown below. The Reynolds number is appropriately defined as: Re= ΩCR2

C/ν.
First, in the case of cylindrical geometry, we have performed axisymmetric, and more recently,
three-dimensional (3D) melt-flow simulations for Reynolds numbers ranging from 1000 to 8000,
all with Ro= 1 , Pr = 0.015. Although these values are typically well below those required
by industry (whose values lie inside the turbulent regime), the rich structure in the resultant
flow behavior seems worthy of analysis in its own right. Moreover, it provides a good basis
for comparing results obtained with our finite element solver NAVIER, and those provided by
STHAMAS3D, a finite-volume code with upwinding implemented at IKZ. The latter is more
dissipative than ours and may be better suited to computing flow properties more relevant to
industry, especially time-averaged quantities such as crystal/melt interface shape, and mean
frequencies. On the other hand, NAVIER seems to be better suited to capturing transient effects
accurately. As in the case for the GaAs research, the steady axisymmetric state was found to be
most unstable to 3D oscillatory instabilities; for iso-rotation with ΩX = ΩC for example, we have
found that, while the 2D solver first exhibits transient behavior for Re≈ 4500 (corresponding
to 1.18 rpm), in the 3D simulation this value is just below 3000 (around 0.79 rpm).
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Fig. 1: Time-history behavior of various quantities in a cylindrical crucible with Re= 3000, Ro= 1; top (from
left to right): mean difference of successive solutions, Nusselt number at crystal/melt interface, temperature at
an axial location; bottom (left to right): Radial, axial, and azimuthal velocity components at various non-axial

locations. Here hT = 0.6.

In Figure 1, we can see the time history plots for a selection of point data, as well as the Nusselt
number on the crystal/melt interface and the mean difference between successive solutions; the
relatively long “swing-in” phase which precedes oscillatory motion may suggest nearness to
the critical Reynolds number. It is also noticeable from these plots that the high frequencies at
this stage are purely associated with the three-dimensionality, with two-dimensional frequencies
being very short, in comparison.
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Figure 2 depicts the time-averaged flow and temperature profiles in an (almost) arbitrary
vertical plane passing through the crucible and containing the axis. Here the time averaging
was based on using a non-dimensionalized end time of 200 (or equivalently, running for 31.8
revolutions in dimensional terms). In fact, this solution is very similar to the axisymmetric
component of the flow and reinforces the point regarding the relatively weak three-dimensional
presence. Examination of the Fourier angle modes for various flow quantities reveals that
the mode with azimuthal wavenumber 4 is the dominant 3D mode, although this is virtually
indiscernible from cross-sectional slices of the crucible, so dominant is the axisymmetry.
Another conclusion is that the flow is dominantly rotational with buoyancy playing a minor rôle
here; the strongest non-rotational influence appears to stem from the large temperature gradient
near the crystal/melt/encapsulant triple line (annulus).

(a)

(b)

Fig. 2: Time-averaged behavior in a typical vertical slice through the crucible showing (a) projected velocity
(b) temperature for the test case Re= 3000,Ro= 1

We have also recently applied our axisymmetric solver to simulating melt flows in crucibles of
a more realistic design. The geometry here principally consists of a cylindrical flat-topped rim
section joined to a spherical section, which itself is joined to a spherical cap of relatively large
radius. Although similar qualitative features are found in comparison with using cylindrical
geometry, early indications suggest that the former type is more de-stabilizing. In Figure
3, for example, the solution is presented for Pr = 0.015 , Ro= 1, and Re= 3500 (0.92 rpm,
approx.) portraying the time-averaged temperature and projected-velocity fields, based on a
dimensionless end time of 100 (15.9 revolutions).
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Fig. 3: Time-averaged solution for melt flow in a curve-based crucible for Re= 3500 , Ro= 1 , showing

temperature contours to the left of the axis; projected velocity vectors to the right of the axis

In conclusion then, we have computed axisymmetric and 3D steady/transient melt-flow solutions
for crucibles with cylindrical geometry, and axisymmetric steady/transient solutions using realis-
tic geometry. In general, all of the results tend to suggest that, for Reynolds numbers up to 8000
at least, the flow is dominantly rotational, with the strongest non-rotational influence stemming
from the triple line. For future work, we are principally interested in simulating transient 3D
solutions using realistic geometry (in parallel with IKZ). Before this however, a realistic design
of the meniscus at the triple line will be added, and suitable 3D meshes constructed.
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Simulation of microwave and laser structures using rectangular grids and tetrahedral nets

Collaborators: G. Hebermehl, F.-K. Hübner, R. Schlundt

Cooperation with: W. Heinrich, T. Tischler, H. Zscheile (Ferdinand-Braun-Institut für Höchst-
frequenztechnik (FBH) Berlin)

Field-oriented methods which describe the physical properties of microwave circuits and optical
structures are an indispensable tool to avoid costly and time-consuming redesign cycles.
Commonly the electromagnetic characteristics of the structures are described by their scattering
matrix which is extracted from the orthogonal decomposition of the electric field at a pair of
neighboring cross-sectional planes on each waveguide, [2]. The electric field is the solution of
a two-dimensional eigenvalue and a three-dimensional boundary value problem for Maxwell’s
equations in the frequency domain, [7]. The computational domain is truncated by electric or
magnetic walls; open structures are treated using the Perfectly Matched Layer (PML) ([11])
absorbing boundary condition.

The subject under investigation are three-dimensional structures of arbitrary geometry which are
connected to the remaining circuit by transmission lines. Ports are defined at the transmission
lines’ outer terminations. In order to characterize their electrical behavior the transmission
lines are assumed to be infinitely long and longitudinally homogeneous. Short parts of the
transmission lines and the passive structure (discontinuity) form the structure under investigation,
[7].

The equations are discretized with orthogonal grids using the Finite Integration Technique (FIT),
[1, 4, 16]. Maxwellian grid equations are formulated for staggered non-equidistant rectangular
grids and for tetrahedral nets with corresponding dual Voronoi cells.

A three-dimensional boundary value problem can be formulated using the integral form of
Maxwell’s equations in the frequency domain in order to compute the electromagnetic field:I

∂Ω
~H ·d~s =

Z
Ω

jω[ε]~E ·d~Ω,
I
∪Ω

([ε]~E) ·d~Ω = 0,I
∂Ω

~E ·d~s = −
Z

Ω
jω[µ]~H ·d~Ω,

H
∪Ω([µ]~H) ·d~Ω = 0,

~D = [ε]~E, ~B = [µ]~H,

with
[ε] = ε0diag(εx,εy,εz) , [µ] = µ0diag(µx,µy,µz)

for rectangular grids and
[ε] = ε0εr , [µ] = µ0µr

for tetrahedral grids. This results in a two-step procedure: an eigenvalue problem for complex
matrices and the solution of large-scale systems of linear algebraic equations with indefinite
symmetric complex matrices.

(1) Eigenmode problem ([2]): The interesting modes of smallest attenuation are found solving
a sequence of eigenvalue problems of modified matrices with the aid of the invert mode of
the Arnoldi iteration using shifts implemented in the package ARPACK, [9]. To reduce the
execution time for high-dimensional problems, a coarse and a fine grid are used. The use of the
linear sparse solver PARDISO ([13]) and two levels of parallelization results in an additional
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speed-up of computation time. The eigenvalue problem for rectangular grids is described in
[5–8]. The mode fields at the ports of a transmission line, which is discretized by means of
tetrahedral grids, are computed interpolating the results of the rectangular discretization. The
PML influences the mode spectrum. Modes that are related to the PML boundary can be
detected using the power part criterion [15].

(2) Boundary value problem ([1]): The electromagnetic fields are computed by the solution of
large-scale systems of linear equations with indefinite complex symmetric coefficient matrices.
In general, these matrix problems have to be solved repeatedly for different right-hand sides,
but with the same coefficient matrix. The number of right-hand sides depends on the number
of ports and modes. Independent set orderings, Jacobi and SSOR pre-conditioning techniques,
[10], and a block quasi-minimal residual algorithm, [3], are applied to solve the systems of
the linear algebraic equations. Details are given in [7] and [14]. In comparison to the simple
lossy case, the number of iterations of Krylov subspace methods increases significantly in
the presence of PML. Moreover, overlapping PML conditions at the corner regions of the
computational domain lead to an increase of the magnitude of the corresponding off-diagonal
elements in comparison to the diagonal ones of the coefficient matrix. This downgrades the
properties of the matrix, [7].

Using rectangular grids, a mesh refinement in one point results in an accumulation of small
elementary cells in all coordinate directions. In addition, rectangular grids are not well
suited for the treatment of curved and non-rectangular structures. Thus, tetrahedral nets with
corresponding Voronoi cells are used for the three-dimensional boundary value problem. The
primary grid is formed by tetrahedra and the dual grid by the corresponding Voronoi cells,
which are polytopes, [12]. The gradient of the electric field divergence at an internal point is
obtained considering the partial volumes of the appropriate Voronoi cell.
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ed., vol. 35 of Lecture Notes Comput. Sci. Eng., Springer, Berlin, 2003, pp. 131–159.

8. , Eigenmode computation of microwave and laser structures including PML, in:
Scientific Computing in Electrical Engineering, W.H.A. Schilders, S.H.M.J. Houben,
E.J.W. ter Maten, eds., Mathematics in Industry, Springer, Berlin, 2004, pp. 196–205.

9. R.B. LEHOUCQ, Analysis and implementation of an implicitly restarted Arnoldi iteration,
Technical Report no. 13, Rice University, Department of Computational and Applied
Mathematics, Houston, USA, 1995.

10. Y. SAAD, Iterative Methods for Sparse Linear Systems, PWS Publishing Company,
Boston, Mass., 1996.

11. Z.S. SACKS, D.M. KINGSLAND, R. LEE, J.-F. LEE, A perfectly matched anisotropic
absorber for use as an absorbing boundary condition, IEEE Trans. Antennas Propagation,
43 (1995), pp. 1460–1463.

12. J. SCHEFTER, Discretisation of Maxwell equations on tetrahedral grids, WIAS Technical
Report no. 6, 2003.
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Fig. 1: Primary and dual grid; An eight-cell primary grid and its one interior dual cell; Voronoi
cell and single tetrahedron. The electric field intensity components marked with red color are

located at the centers of the edges, and the magnetic flux density components marked with
black color are normal to the cell faces.
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Visualization of numerical simulations and production of presentations

Collaborators: G. Reinhardt, F.-K. Hübner

Visualization for numerical simulations, in particular video animation for time-dependent
problems, has been the main task in the period since the last review. This has been especially
important for 3D problems, where visualization is a vital tool for interpretation and verification
of numerical results.

Due to the generally higher performance of the computers, the production of videos has been
focused on computer animation such as Animated GIFs, AVI animation (Microsoft) and MPEG
videos. The creation of VHS/SVHS videos was not required.
The configuration of the computer with a Fire Wire and/or USB 2 interface enables direct
transfer from online visualization and computer animation to a digital video recorder.

An important part of the support provided for all research groups of the institute was the
conversion of differing image formats, notably the conversion of file formats from the “PC
world” to the “workstation world”. For this reason it has also been necessary to handle
visualization software for the operating system Windows, such as Power Point or Adobe
Photoshop.

With the development of a new corporate identity for our institute, it has been necessary to
realize the technical transfer of the designer’s outlines from typographic PC software to the
workstation software environment (UNIX) of the institute. This included the creation of macros
for LaTeX (together with J. Fuhrmann), the installation of postscript fonts, and the adaptation
and optimization of files in the UNIX environment.
Software was thereby subsequently developed for the new layout of posters and flyers from our
institute. Active support for the production of new posters and flyers for all of the research
groups was provided.
The “Numerical Modeling” group of the Institute of Crystal Growth (IKZ) presented results
on crystal melt-flow simulation from an ongoing collaborative project with the WIAS research
group “Numerical Mathematics and Scientific Computing” at the “Long Night of Sciences” in
Berlin/Potsdam (“Lange Nacht der Wissenschaften”). The graphics were presented in the form
of Animated GIFs, which were produced at WIAS.

Fig. 1: A picture of the melt-flow simulation
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Numerical simulation of Direct Methanol Fuel Cells

Collaborators: J. Fuhrmann, K. Gärtner

Cooperation with: J. Bloch (Freie Universität Berlin (FU-FZT 86))

Supported by: DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (Research
Center “Mathematics for Key Technologies” (FZT 86)), project C1

The project has been continued with the following focuses:

Improvement of the solver kernel The corresponding work is closely related to the pdelib2
project. The aim is to be able to handle efficiently calculations in the two- and three-dimensional
cases.

Fig. 1: Three-dimensional simulation results for an elementary cell in the case of crossing
diffusion channels.

Top: methanol concentration (mol/l), bottom: water pressure (bar) and proton potential (V)

http://www.wias-berlin.de/software/pdelib/pdelib2/index.html
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Development of tools for bifurcation analysis In close cooperation with project C1 of the
DFG Research Center we started the development of tools for path-following and bifurcation
detection for systems of partial differential equations. Once available, this tool shall help to
understand under which conditions a fuel cell can have several steady states.
Currently, we are able to handle sufficiently well model problems like the Brusselator equations.
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Fig. 2: Bifurcation diagram of a 1D Brusselator system in dependency of the reactor length λ

Project presentation We have been able to present our results at the Computational Fuel
Cell Dynamics II workshop in Banff, Canada, and—jointly with the Micro fuel cell group of
Fraunhofer IZM Berlin—at the H2 Expo 2003 fair in Hamburg.
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pdelib – Algorithms and software components for the numerical solution of partial
differential equations

Collaborators: J. Fuhrmann, K. Gärtner, H. Langmach, M. Uhle, H. Si

Cooperation with: A. Linke (Freie Universität Berlin (FU-FZT 86))

Supported by: DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (Research
Center “Mathematics for Key Technologies” (FZT 86)), project C1

The purpose of this project is the further development of pdelib, a toolbox of software
components for the numerical solution of partial differential equations. Current project works
focus on the re-design of the whole code.
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Fig. 1: Preliminary results for parallel speedup for Laplace operator

The main features being implemented are

• Solver kernel which runs efficiently on single processor workstations and multiprocessor
SMP architectures using OpenMP or pthreads. The API is targeted at ease of use of the
parallel features while not giving up code efficiency;

• Support for a wide class of problems including finite volumes for systems of con-
vection/diffusion/reaction equations, Navier-Stokes equations, and higher order finite
elements;

• Integration of the Delaunay mesh generators triangle [1] (2D) and TetGen (3D). This
allows to describe geometries in the extension language Lua or in the C code and thus
offers a large amount of flexibility for grid adaptation and geometry modification;

• Parameter input and solver control can use the Lua [3] extension language;

• Online visualization of the solution process based on OpenGL.

http://www-2.cs.cmu.edu/~quake/triangle.html
http://tetgen.berlios.de
http://www.lua.org
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Fig. 2: Mesh subdivided for running calculations on four processors with separators removed

The main aim of the efforts during the reporting period was to bring the pdelib2 code into a
state where it can be used in application projects. We focused on the following issues:

Grid partitioning We assume that grid generators produce grids which are described by an
array of node coordinates, an array of cells characterized by the adjacent node numbers, an
array of cell region numbers, an array of boundary faces characterized by the adjacent node
numbers, and an array of boundary region numbers.
Grid partitioning in pdelib2 has the following aims:

• Given a number of processors nproc, subdivide the sets of cells, resp. boundary faces
resp. nodes into partitions. To each of the partitions we assign a color in such a way
that neighboring partitions appear in different colors. If possible, nproc partitions shall
correspond to each of the colors.

This is motivated by the assumption that all partitions with one color can be processed in
parallel without write conflicts by nproc processors during assembly and preconditioning.

• Given a number ncache of cells, re-arrange cells and boundary faces into homogeneous
zones stored consecutively. Homogeneity means that each zone belongs to exactly one
region and exactly one partition.

Behind this lies the assumption that all data for assembly on ncache elements fit
into the cache and can be processed utilizing superscalar features of modern processor
architectures.

Partitioning is performed recursively in several steps with the help of the METIS [4] package.
A loop over the grid after partitioning then has the following hierarchical structure:

loop over all partition colors
#pragma omp parallel

loop over all partitions with given color
loop over all zones of the partition

loop over all elements of a zone

http://www-users.cs.umn.edu/~karypis/metis
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The user needs to write code for the inner two loops while the outer loop and the parallel loop
are hidden, opening the possibility for varying the implementation.

Fig. 3: Regions, partitions, and zones for a DMFC contact plate

Higher order FEM On top of the partitioned grid structure, currently, structures for assembly
of higher order finite elements are being implemented.

FVSystem problem class As a first problem class available, a system of coupled nonlinear
reaction-diffusion-convection equations as described in [6] has been implemented on top of the
grid kernel.

Online graphics Visualization for partitioned grids and functions defined on them has been
implemented using OpenGL and the gltools framework.
The gltools framework has been re-implemented on top of the FLTK [2] GUI toolkit.
The portability of FLTK to MacOSX and Microsoft Windows allows now to make pdelib2
available for these systems, including graphics and GUI.

Clean-up of the API documentation The application programming interface has been
cleaned up so that it can be well understood by the users. Documentation using the Doxygen
[5] documentation tool has been started.
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4.4 Research Group Nonlinear Optimization and Inverse Problems

4.4.1 Overview

Die Arbeit der Forschungsgruppe konzentrierte
sich auf die analytische und numerische Be-
handlung hochdimensionaler Optimierungsauf-
gaben und inverser Probleme, die in aktuellen
ingenieurtechnischen Anwendungen auftreten.
Sie umfasste Grundlagenforschung zur Analy-
sis und Numerik dieser Probleme bis hin zur
Entwicklung von effizienten Algorithmen und
Software und wurde finanziell durch Industrie-
partner, das BMBF und die DFG gefördert.

The work of the group concentrated on the an-
alytical and numerical treatment of large-scale
optimization and inverse problems occurring
in current engineering applications. It ranged
from basic research on analysis and numer-
ics to the development of efficient algorithms
and software, and was financially supported by
industrial partners, BMBF, and DFG.

Unsere Forschungsschwerpunkte waren:

• Optimierung diffraktiver Strukturen,

• Optimale Steuerung von Oberflächen-
wärmebehandlungen,

• Optimierungsprobleme bei der industri-
ellen Einsatzplanung.

The main research topics were:

• Optimization of diffractive structures;

• Optimal control of surface heat treat-
ments;

• Optimization problems related to indus-
trial resource scheduling.

Weiterhin hat die Forschungsgruppe an den
folgenden gruppenübergreifenden Projekten am
WIAS mitgearbeitet:

Moreover, the group has collaborated on the
following joint projects with other research
groups at WIAS:

• Optoelektronische Sensoren (zusammen
mit der Forschungsgruppe „Partielle Dif-
ferentialgleichungen und Variationsglei-
chungen“),

• Enveloppenfunktionsapproximation für
elektronische Zustände in Halbleiter-
Nanostrukturen (zusammen mit den For-
schungsgruppen „Partielle Differential-
gleichungen und Variationsgleichungen“
und „Numerische Mathematik und Wis-
senschaftliches Rechnen“),

• Quasilineare nichtglatte Evolutionssys-
teme in Lp-Räumen in dreidimensio-
nalen Gebieten (zusammen mit der
Forschungsgruppe „Partielle Differenti-
algleichungen und Variationsgleichun-
gen“).

• Optoelectronic sensors (in cooperation
with research group “Partial Differential
Equations and Variational Equations”);

• Envelope function approximation for
electronic states in semiconductor nano-
structures (in cooperation with research
groups “Partial Differential Equations
and Variational Equations” and “Numer-
ical Mathematics and Scientific Comput-
ing”),

• Quasilinear nonsmooth evolution sys-
tems in Lp-spaces on three-dimensional
domains (in cooperation with research
group “Partial Differential Equations and
Variational Equations”).
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4.4.2 Projects

Optimization of diffractive structures and reconstruction methods for severely ill-posed
problems

Collaborators: G. Bruckner, J. Elschner, A. Rathsfeld, G. Schmidt

Cooperation with: B. Kleemann (Carl Zeiss Oberkochen), R. Güther (Ferdinand-Braun-
Institut für Höchstfrequenztechnik Berlin), G. Bao (Michigan State University, East Lansing,
USA), G.C. Hsiao (University of Delaware, Newark, USA), M. Yamamoto (University of
Tokyo, Japan), CiS Institut für Mikrosensorik gGmbH (Erfurt)

Supported by: BMBF: “Modellierung und Optimierung mikrooptischer Oberflächenstruk-
turen” (Modeling and optimization of microoptical surface structures), DFG: “Scientific coop-
eration with Japan: Inverse problems in electromagnetics and optics”

1. Accurate FEM and BEM simulation of diffraction by binary and polygonal gratings
(A. Rathsfeld, G. Schmidt).

The diffraction of light waves by optical gratings can be reduced to boundary value problems
for the Helmholtz equation on a rectangular domain which contains one period of the surface
structure. In case of complicated surface geometries, the FEM is the natural method for the
numerical solution. We continued to develop our FEM program package DiPoG, versions 1.4
and 2.0 (cf. [16], [17]), which treats the outgoing wave conditions at infinity by coupling with
BEM and which includes a generalized FEM approach for high frequency solutions.
DiPoG-1.4, which is used to simulate and optimize binary and multilevel structures, now
includes all modifications which were developed due to requirements of the industrial partners
from Carl Zeiss and CiS Erfurt. This concerns the possibility to model homogeneous layers
of any thickness also within the grating structure, to choose different output formats for the
computed diffracted fields and related values, and the improved GMRES-based iterative solver.
Most of these extensions have been included into the programs for solving optimal design
problems. In particular, in version 1.4 we implemented new functionals, which take into
account prescribed polarizations of the incoming waves, and we introduced a new solver for the
direct and dual problems based on the PARDISO library. Both of the implemented optimization
algorithms, a conjugate gradient and an interior point method, can now be controlled by the
same set of parameters.
In DiPoG-2.0 we implemented in accordance with the requirements of our cooperation partners
from Carl Zeiss a new presentation of the computed results, a graphical display of the far-field
solution, and an improved output of efficiency data for the conical diffraction. Since a simple
handling of geometric data is essential for a user-friendly operation of DiPoG, we increased
the number of standard gratings which can be generated by simple code words and a few
parameters. In particular, two types of echelle gratings, of sine-shaped, lamellar, and coated
trapezoidal gratings have been realized and a stack of such profiles can now easily be assembled.
Finally, based on our FEM code and on simulated annealing, we developed a first version of a
global optimization algorithm to design polygonal grating profiles. This work is to be continued
next year.
For gratings with a single transition profile and, possibly, a single coated layer, a boundary
integral equation method like the IESMP (owned by Carl Zeiss, cf. [13]) turns out to be more
efficient. However, in order to treat thin coatings and corner profiles, the simple combination

http://www.wias-berlin.de/people/schmidt/project/index.html
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of trigonometric collocation for the main part operator and of a Nyström quadrature for the
remainder within IESMP is not sufficient. We changed the basic discretization scheme of the
integral equation method to spline collocation over graded meshes and developed an adapted
quadrature algorithm. Further we implemented an extension of Ewald’s method for computing
the kernel functions of the integral operators. The acceleration method for these infinite sums
implemented in IESMP breaks down if the kernel is nearly singular, whereas Ewald’s method
allows to extract the main singularity and to handle it separately. For special profile curves, the
resulting method converges and the numerical error diminishes in accordance with theoretically
predicted orders. This work is to be continued next year.

2. Inverse problems for diffraction gratings: Uniqueness results and reconstruction
methods (G. Bruckner, J. Elschner, A. Rathsfeld, G. Schmidt).

The reconstruction of the shape of periodic structures from measurements of scattered electro-
magnetic waves is a problem of great practical importance in modern diffractive optics, [2]. We
studied the scattering of monochromatic plane waves by a two-dimensional diffraction grating,
i.e. a periodic curve (the grating profile) which separates two regions with different optical
materials. Let k+ > 0 be the refractive index (or wave number) above the grating, whereas the
refractive index below the interface satisfies ℜk− > 0 , ℑk− ≥ 0. The direct diffraction problem
is modeled by a transmission problem for the periodic Helmholtz equation.
Let the profile of the diffraction grating be given by the curve Λ f := {(x1,x2)∈R2 : x2 = f (x1)}
where f is a 2π-periodic Lipschitz function. Suppose that a plane wave given by

uin := exp(iαx1− iβx2), (α,β) = k+(sinθ,cosθ)

is incident on Λ f from the top, where θ ∈ (−π/2,π/2) is the incident angle. The inverse
problem or the profile reconstruction problem can be formulated as follows.
(IP): Consider a fixed refractive index k− below Λ f , and let θ be a fixed incident angle.
Determine the profile function f from incident waves uin, given for several wave numbers k+,
and the knowledge of the corresponding scattered fields on two straight lines {x∈R2 : x2 = b±}
above and below the structure.
Note that this problem also involves near-field measurements since the evanescent modes cannot
be measured far away from the grating profile. The uniqueness with a single arbitrary wave
number k− in problem (IP) is presently only known for reflection gratings, i.e. for ℑk− > 0
([8]). General uniqueness results with a single wave number are also available for perfectly
reflecting diffraction gratings with polygonal profiles ([10]).
In the practically important case of transparent gratings (k− > 0), we were recently able to
show uniqueness for a finite number of refractive indices, where this number only depends
on the maximal value kmax of k−, k+, θ, and the amplitude h of the profile function f ([9]).
In particular, if h

√
(k+)2 +(k−)2 < π, i.e. the refractive indices are sufficiently small, then

uniqueness with a single wave number holds. The proof is based on the Courant-Weyl min-max
principle for the eigenvalues of a fourth-order elliptic problem.
The efficient numerical solution of the profile reconstruction problem is challenging due to the
fact that it is both nonlinear and severely ill-posed. For the reconstruction of perfectly reflecting
periodic interfaces leading to the inverse Dirichlet problem, several inversion algorithms based
on iterative regularization ([12]), linear sampling ([1]), and the Kirsch-Kress optimization
method ([4], [6]) became recently available. The latter approach was originally developed for
acoustic obstacle scattering and avoids the solution of direct diffraction problems. In [5] a
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corresponding reconstruction method for the inverse transmission problem (IP) was developed
and analyzed for the first time.
As in [4], [6], this method splits the inverse problem into a linear ill-posed part to reconstruct
the scattered field and a nonlinear well-posed part to find the profile curve. The minimization of
the Tikhonov functional for the linear problem and the defect minimization of the transmission
conditions are then combined into one cost functional. We obtained convergence results in the
general case of Lipschitz grating profiles, extending the variational approach for the perfectly
reflecting case. However, in the transmission case, it is harder to establish convergence of the
cost functional. The proof of this is based on nontrivial continuity and solvability properties of
layer potentials on periodic Lipschitz graphs.
The reconstruction algorithm was implemented as a two-step method. Two unknown density
functions are first computed from near-field data measured above and below the grating
structure, which allows us to represent the scattered and transmitted fields as single layer
potentials. Then these density functions are used as inputs to a nonlinear least squares problem,
which determines the unknown profile as a curve where the associated transmission conditions
are fulfilled. After discretization, the least squares problem is solved iteratively by the Gauss-
Newton method. Numerical results with exact and noisy data demonstrated the efficiency of
the inversion algorithm, [5].
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Fig. 1: Given and reconstructed profile using 100 and 800 Gauss-Newton iterations



104 4. RESEARCH RESULTS AND APPLIED PROJECTS

3. Optimal design of nonlinear diffraction gratings (G. Schmidt).

If a plane wave of frequency ω1 illuminates on a grating or periodic structure ruled on some
nonlinear optical material, then the nonlinear optical interaction gives rise to diffracted waves at
frequencies ω1 and ω2 = 2ω1. This process represents the simplest situation in nonlinear optics,
the so-called second harmonic generation (SHG). An exciting application of SHG is to obtain
coherent radiation at a wavelength shorter than that of the available lasers. Unfortunately, it is
well known that nonlinear optical effects from SHG are generally so weak that their observation
requires an extremely high intensity of laser beams. The effective enhancement of nonlinear
optical effects presents one of the most challenging tasks in nonlinear optics. It has been
announced recently that SHG can be greatly enhanced by using diffraction gratings or periodic
structures, and the PDE model can predict the field propagation accurately.
The joint paper [3] with Gang Bao and Kai Huang (Michigan State University) is concerned
with some aspects of the systematic design of surface (grating) enhanced nonlinear optical
effects. We give the mathematical foundation of optimization methods for solving the optimal
design problem of nonlinear periodic gratings. By conducting a perturbation analysis of the
grating problems that arise from smooth variations of the interfaces, we derive explicit formulas
for the partial derivatives of the reflection and transmission coefficients. Such derivatives allow
us to compute the gradients for a general class of functionals involving the Rayleigh coefficients.

4. Reconstruction of curve source profiles from boundary measurements in a 2D wave
equation model (G. Bruckner).

Generalizing earlier investigations, [7], where point sources in a one-dimensional vibrating
string were identified from dislocations at one fixed point, here a corresponding 2D problem is
investigated: the identification of curves in a plane domain from measurements at the boundary,
where excitations are governed by the 2D wave equation. This can be considered as a first step
towards a reduced earthquake model. A second step could be replacing the wave equation by
the Lamé system. In [11] the Lamé system has been considered with an L2 source function,
while here H−1 sources are asked for. In our case a main difficulty consists in finding an
adequate distance for curves in a 2D domain. So far, this problem could be solved by the
authors only for pieces of straight lines. The stability estimate is of logarithmic type, and in the
proofs, Duhamel’s principle and Carleman estimates are essential.
A paper is in preparation.

5. New solution method for volume integral equations of scattering theory (G. Schmidt).

Scattering of incoming plane waves by inhomogeneous media can be described by Lippmann-
Schwinger-type integral equations, which contain the diffraction potential over the volume of
the scatterer. Especially in the case of high wave numbers, the approximation of the diffraction
potential is very expensive. In [14] the cubature approach which had been developed in [15]
was extended to the numerical solution of Lippmann-Schwinger equations. We considered a
collocation method where the unknown is sought as a linear combination of scaled and shifted
Gaussians. Then the discrete system could be obtained from the semi-analytic representation.
We proved spectral convergence rates of the method, which were confirmed in one-dimensional
numerical tests.
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Optimal control of surface heat treatments

Collaborators: E. Bänsch (FG 3), M.H. Farshbaf Shaker, D. Hömberg, W. Weiss

Cooperation with: A. Khludnev (Lavrentyev Institute of Hydrodynamics, Novosibirsk, Rus-
sia), J. Sokołowski (IECN/INRIA Lorraine, Vandoeuvre-lès-Nancy, France), F. Tröltzsch (Tech-
nische Universität Berlin), S. Volkwein (Karl-Franzens-Universität Graz, Austria)

Supported by: DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (Research
Center “Mathematics for Key Technologies”), project C11

1. Thermomechanical models of phase transitions in steel (E. Bänsch, D. Hömberg,
W. Weiss).

While the interplay between temperature and phase volume fractions is well understood, the
incorporation of mechanical effects is still a challenging task. The metallurgical phases have
material parameters with different thermal characteristics, hence their effective values have
to be computed by a mixture ansatz. The different densities of the metallurgical phases
result in a different thermal expansion. This thermal and transformation strain is the major
contribution to the evolution of internal stresses during heat treatments. Experiments with phase
transformations under applied loading show an additional irreversible deformation even when
the equivalent stress corresponding to the load is far below the normal yield stress. This effect
is called transformation-induced plasticity. The irreversible deformation leads to a mechanical
dissipation that acts as a source term in the energy balance.
Neglecting the influence of internal stresses on the transformation kinetics, a consistent
mathematical model which takes care of all these effects has been developed and analyzed in
[1]. The new model has been implemented in an existing adaptive finite element code, [9]. In a
simplified situation without inelastic dissipation term in the energy balance, an optimal control
problem has been investigated, [8].
In [2] a thermoelastic contact problem with phase transitions has been studied.

2. Optimal control of laser surface treatments (M.H. Farshbaf Shaker, D. Hömberg,
W. Weiss).

Besides of the reduced order approach to tackle the optimal control problem of laser surface
hardening, which has been considered in [4, 5], the emphasis of last year’s work lay on the
development of new nonlinear PID control algorithms for two- and three-dimensional situations.
The results are published in [3] and [7].
Figure 1 shows the result of a simulation with constant laser energy (top) in comparison with
the application of a linear PID control of subsurface temperature (bottom left) and the result of
a simulation with the new nonlinear PID algorithm (bottom right).

http://www.math.TU-Berlin.DE/DFG-Forschungszentrum
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Fig. 1: Control of laser surface hardening to achieve a constant hardening depth:
uncontrolled (top); linear PID subsurface control (bottom left);

nonlinear PID subsurface control (bottom right).

3. Laser-induced thermotherapy (M.H. Farshbaf Shaker, D. Hömberg, W. Weiss).
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Fig. 2: Mechanism of laser thermotherapy

In a first step towards life sciences applications we have started to apply our laser hardening
model to the case of laser-induced thermotherapy (Fig. 2). This is a cancer therapy in which
laser light is guided through a transparent catheter into a tumor. The absorbed light leads to a
heating of the tissue. In contrast to hyperthermia cancer treatments where the temperature does
not exceed, say, 43 oC, in this process the tissue is heated up to more than 60 oC leading to a
coagulation of the tumor tissue and thus a destruction of the tumor.
In [6] our software WIAS-SHarP has been used to simulate this process using an Arrhenius
ansatz to model the tissue damage due to coagulation.
Future work will concern improved models for tissue damage and the investigation of optimal
control problems related to therapy planning and the design of applicators.
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Optimization problems related to industrial resource scheduling

Collaborators: I. Bremer, R. Henrion

Cooperation with: W. Römisch (Humboldt-Universität (HU) zu Berlin), T. Szántai (Technical
University of Budapest, Hungary), J. Outrata (Institute of Information Theory and Automation
(UTIA) Prague, Czech Republic), A. Jourani (Université de Bourgogne, Dijon, France),
D. Dentcheva (Stephens Institute of Technology, New Jersey, USA), A. Seeger (Université
d’Avignon, France)

Supported by: DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (Research
Center “Mathematics for Key Technologies”), project C7;
Rücker Ges.m.b.H, Graz, Austria

1. Path planning for industrial robots and human models in automotive industry
(I. Bremer).

The VR tool of Rücker for production planning in automotive industry uses a large number of
externally created 3D models in different formats. The models which are usually generated from
CAD are not optimized with respect to memory and/or speed performance. Hence, real-time
animations of complete shop floors with a lot of moving materials, robots, and humans become
very difficult.
On the basis of OpenGL Performer [5], which offers several possibilities to improve perfor-
mance, i.e. the frame rate, we provided a tool for automatic model conversion such that the
visual impression for the user is not affected but the cost of rendering is reduced as much as
possible.
In particular, we have considered the problem of removing holes and the development and
implementation of active surface definitions (ASD). There ASDs are hierarchical multigrid
structures. Based on the distance between viewer and object each object is visualized on a
certain grid level. For distance changes, the corresponding change in visualization is realized
by a smooth morphing between the respective grid levels.
See also the results of the year before3,4.

2. Mean risk models for electricity portfolio management (R. Henrion).

A typical feature of optimization problems arising in engineering sciences is the presence of
random and nonsmooth parameters. In this research project, modeling, solution procedures, and
investigations on structure and stability of such problems are the main objective. It is embedded
into a cooperation with other scientific institutions in Berlin via the DFG Research Center (with
HU), a joint research seminar (with HU and Konrad-Zuse-Zentrum für Informationstechnik
(ZIB)), and the joint organization of a yearly course for chemical engineers supported by
DECHEMA (with Technische Universität (TU) and ZIB). The focus of research is on stochastic
optimization problems.

The following subjects were considered:

3http://www.wias-berlin.de/publications/annual-reports/2002/node60.html
4http://www.wias-berlin.de/publications/annual-reports/2002/node50.html

http://www.math.TU-Berlin.DE/DFG-Forschungszentrum
http://www.wias-berlin.de/publications/annual-reports/2002/node60.html
http://www.wias-berlin.de/publications/annual-reports/2002/node50.html
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1. Scenario reduction: The solution of power management problems is typically based on
a scenario tree formulation. The complexity of such trees requires a drastical reduction
to subtrees without much loss of information. A general theoretical framework to do
so on the basis of suitable probability metrics was developed in [1]. For mixed-integer
models to be considered in this project, certain discrepancy distances have to be used. As
a first step, an explicit formula for scenario reduction could be obtained in case of the
“closed-set” discrepancy and a linear programming reformulation in case of the interval
discrepancy.

2. Chance constraints: One possibility to model risk in stochastic optimization is to use
probabilistic (chance) constraints. Due to the discretization process in power management,
possibly continuous distributions are approximated by discrete ones. This raises the
question of solution stability for problems with chance constraints. An extensive analysis
was provided in [2] and [3].

3. Error bounds: The concept of error bounds is a key concept in nonlinear optimization
(numerical solution, constraint qualifications, stability) and is itself a special instance of
the more general calmness concept for multifunctions. A detailed characterization in the
framework of nonsmooth optimization including relations to the above research project is
contained in [4].
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4.5 Research Group Interacting Random Systems

4.5.1 Overview

Das Hauptinteresse unserer mathematischen
Forschung galt weiterhin der stochasti-
schen Dynamik, wobei eine Anzahl bemer-
kenswerter Resultate erzielt werden konn-
te. Diese betreffen zufällige Störungen
von schnell-langsamen dynamischen Syste-
men, unendlichdimensionale Diffusionspro-
zesse, wechselwirkende Verzweigungsprozes-
se und Koagulations-Fragmentations-Prozesse.
Zum Thema der ungeordneten Spin-Systeme
im Gleichgewichtszustand konnte eine voll-
ständige Analyse erzielt werden für eine Klasse
von Modellen, die auf Gauß’schen Prozessen
mit hierarchischer Kovarianzfunktion basieren.
Interessanterweise spielen in dieser Untersu-
chung reellwertige Verzweigungsprozesse eine
wesentliche Rolle, eine Tatsache, die die viel-
fältigen Beziehungen zwischen den verschie-
denen in der Gruppe untersuchten Fragestel-
lungen illustriert. Im Rahmen des durch das
DFG-Forschungszentrum finanzierten Projekts
ist unserem Profil durch die Anwendung von
Methoden aus dem Gebiet der interagierenden
Teilchensysteme auf mikroskopische Modelle
in der Finanzmathematik eine neue Facette hin-
zugefügt worden.

The focus of our mathematical research has
continued to be on stochastic dynamics, where
a number of remarkable results could be ob-
tained. These concern stochastic perturba-
tions of slow-fast dynamical systems, infinite
dimensional diffusion processes, interacting
branching diffusion processes, and coagulation-
fragmentation processes. In the analysis of
the equilibrium properties of disordered spin
systems, a complete analysis of a class of
models based on Gaussian processes with hier-
archical covariance function could be achieved.
Interestingly, in this analysis continuous-state
branching processes play a crucial role, high-
lighting the mathematical coherence of the dif-
ferent areas of activity within the group. Within
the project funded by the DFG Research Cen-
ter, applications of methods from interacting
particle systems to microscopic models in fi-
nance have added a new facet to our application
profile.

Während das DFG-Schwerpunktprogramm „In-
teragierende stochastische Systeme von hoher
Komplexität“ im Jahr 2003 zum Abschluss
kam, wird ein Teil dieser Aktivitäten fortge-
führt in Form einer ”Dutch German Bilate-
ral Research Group“, die gemeinsam von der
DFG und der NWO finanziert wird. Die For-
schungsgruppe war stark vertreten während des
Halbjahresprogramms “Interaction and Growth
in Complex Stochastic Systems” am Isaac-
Newton-Institut in Cambridge. Auch die Betei-
ligung am Programm “Population Genetics and
Statistical Mechanics” am Erwin-Schrödinger-
Institut in Wien gab Impulse für neue Anwen-
dungen der Kompetenzen der Forschungsgrup-
pe auf dem Gebiet der biologischen Fragestel-
lungen.

While the DFG Priority Program “Interacting
Stochastic Systems of High Complexity” came
to a close in 2003, part of the activities are con-
tinued in the framework of a Bilateral Dutch-
German Research Group that is jointly financed
by the DFG and the NWO. The research group
was strongly present at a semester on “In-
teraction and Growth in Complex Stochastic
Systems” organized at the Isaac Newton In-
stitute in Cambridge. Also, the participation
in the program “Population Genetics and Sta-
tistical Mechanics” at the Erwin Schrödinger
Institute in Vienna brought new impulses for
applications of the expertise of the group in
biological problems.
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Im Berichtsjahr habilitierte sich Barbara Gentz
an der Technischen Universität Berlin, und In-
go Matheis schloss seine Dissertation ab.

In 2003, Barbara Gentz passed her habilitation
at the Technical University of Berlin, and Ingo
Matheis completed his Ph.D. thesis.

Auf den folgenden Seiten werden die wis-
senschaftlichen Ergebnisse des vergangenenen
Jahres ausführlicher dargestellt.

The following pages report on the scientific
achievements of the past year in more detail.
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4.5.2 Projects

Low temperature phases in models with long-range interactions

Collaborators: A. Bovier, C. Külske

Cooperation with: I. Merola, E. Presutti (Università di Roma “Tor Vergata”, Italy), M. Zahrad-
nı́k (Charles University, Prague, Czech Republic)

Supported by: DFG Priority Program „Interagierende Stochastische Systeme von hoher
Komplexität“ (Interacting stochastic systems of high complexity)

Models of statistical mechanics with weak long-range interactions have been introduced by
V. Kac half a century ago to obtain a rigorous version of the van der Waals mean field theory.
Today we see these models anew as interesting candidates to reach a better understanding of
disordered spin systems and in particular the relation between mean field theory and lattice
models in the context of disordered systems. In this project, whose funding through the DFG
ended with the termination of the Priority Program “Interacting stochastic systems of high
complexity” in 2003, we have undertaken a long-term effort to investigate such models and
to develop appropriate mathematical tools for their analysis. An detailed review of the results
obtained here can be found in [1].
In a joint paper with Merola, Presutti, and Zahradnı́k, we have addressed in this context a
classical question from statistical mechanics, that of the Gibbs Phase Rule. “In the abstract
space of all potentials, phase transitions are an exception”. This statement by Ruelle in his
classical textbook, [6], suggests the validity of the Gibbs phase rule, but the notion must be
accepted only very cautiously, as a complete proof of the Gibbs rule would require to show that
in the space of the thermodynamically relevant parameters, phase transitions occur on regular
manifolds of positive co-dimension. But, as stated again by Ruelle in a recent review on open
problems in mathematical physics, [7], the proof of such a statement must be regarded as one
of the main challenges in statistical mechanics.
In the Pirogov-Sinai regime where configurations can be described by contours which satisfy
Peierls conditions, the situation is definitely better, as the theory provides tools for a very
detailed knowledge on the structure of Gibbs measures in a region in the relevant parameters
space. The traditional Pirogov-Sinai theory is a low temperature expansion which enables
to control the entropic fluctuations from the ground states, its natural setup being the lattice
systems. But the theory is not limited to such cases and it has been applied to a great variety of
situations, covering various types of phase transitions. One is the case of Kac potentials, which
are seen as a perturbation of mean field, where the small parameter is the inverse interaction
range of a Kac potential. According to van der Waals, the theory becomes then well suited for
investigating the liquid-vapor branch of the phase diagram and, as shown in [5], its applications
are not restricted to lattice models, [3], [4], but continuum particle systems can be treated as
well.
All the above cases have a common structure. There is a term in the Hamiltonian of the
form −λα, where α is an extensive quantity and λ ∈R is its conjugate variable: in the case
of spins, λ is an external magnetic field and α the spin magnetization; for particles, λ is the
chemical potential and α the particles number. Our main assumption is that at a value, say
λ = 0, of the intensive parameter there is phase coexistence with α an order parameter, and
that defining contours in terms of the variable α, the contours satisfy the Peierls bounds with
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suitable coefficients. Under this assumption the process described in terms of the variable α
has the typical features of a low temperature Ising model. We will thus have a class of “plus”
measures where α is typically positive (as well as its expectation) and a class of “minus”
measures with α typically negative. We are talking of classes of plus and minus measures and
not just of plus and minus measures, because we are not ruling out the possibility of other
phase transitions, described by other order parameters.
These assumptions imply that at λ = 0 there are two distinct classes of DLR measures, the plus
and minus ones, for which the expected value of α is positive, respectively negative, and which
are obtained by thermodynamic limits with plus, respectively minus, boundary conditions.
Under this assumption (plus some technical conditions of super-stability type if the variables
are unbounded) we prove that there is a finite interval I of values of λ, centered at λ = 0,
where coexistence occurs only at λ = 0. More precisely, if λ > 0 (or λ < 0) and in I , then
any translational invariant DLR measure has positive (negative) expectation, and both plus and
minus boundary conditions produce in the thermodynamic limit the same class of states.
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Stochastic dynamics

Collaborators: A. Bovier, B. Gentz

Cooperation with: G. Ben Arous (Courant Institute, New York, USA), N. Berglund (Centre
de Physique Théorique, Marseille, and Université de Toulon, France), V. Gayrard (Centre
de Physique Théorique, Marseille, France, and Université de Montréal, Canada), F. den
Hollander (EURANDOM, Eindhoven, The Netherlands), M. Klein (Universität Potsdam),
F. Nardi (Università di Roma “La Sapienza”, Italy)

Supported by: DFG: Dutch-German Bilateral Research Group “Mathematics of random
spatial models from physics and biology”

The central issue that is addressed in this project is how to adequately describe a complex
system, whose dynamics is specified on a microscopic scale, on spatially coarsened macro- or
mesoscopic scales in terms of an effective dynamics on different time scales inherent to the
system. The emphasis here is to be put on the fact that these effective dynamics must depend,
in general, on the time scale considered. For example, while even in microscopically stochastic
systems one expects generally deterministic limit dynamics for the spatially coarsened system
on short time scales (homogenization), on much longer time scales stochastic effects may again
become relevant and may even appear in deterministic systems as a residual effect of the
integrated short-wavelength degrees of freedom.
One of the central concepts in this context is that of metastability. It applies to situations
where the state space of a system can be decomposed into several (“quasi-invariant”) subsets
in which the process remains for a very long time before transiting from one such set into
another. Over the last years, we have developed a novel approach to the analysis of both
probabilistic (distribution of transition times) and spectral (eigenvalues and eigenfunctions of the
generator) quantities and their relations. This approach allows in particular to obtain rigorous
results that have a far greater precision than the standard exponential estimates obtained in the
Wentzell-Freidlin theory. In a collaboration with F. den Hollander and F. Nardi we are currently
applying these methods to the problem of nucleation in a model of conservative dynamics of
a lattice gas (“Kawasaki dynamics”). The issue is to obtain precise information on the time
it takes to form a supercritical droplet, and thus to initiate a vapor-liquid phase transition,
in a super-saturated gas in some finite volume at low temperatures. This problem has been
analyzed rigorously in the last few years by den Hollander, Olivieri, and Scoppola [3] and den
Hollander, Olivieri, Scoppola, and Nardi [4] in dimensions two and three, respectively, using
the conventional large deviation-type methods. By a detailed analysis of the energy landscape
of the model, they obtained the logarithmic asymptotics of the nucleation time in the limit as
the temperature tends to zero. In a forthcoming paper ([5]), we slightly refine the analysis of the
energy landscape in the vicinity of the saddle points (critical droplets) and apply the machinery
developed in [2]. As a result we obtain, as expected, striking improvements of all the estimates,
and are able to compute (at least for large Λ) essentially the precise values of the pre-factors
of the exponential rates. Interestingly, the variational problems arising in the computation of
the relevant capacities are seen to be closely related to classical capacity estimates involving
the free diffusion of a single particle. While in this paper we remain in the regime of very
low temperatures, we see a perspective to move to the physically more interesting regimes of
moderately low temperatures, and we intend to pursue this line actively in the coming years.
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The investigation of more complex systems with an infinity of metastable states leading to the
phenomenon of “ageing” ([1]) has continued rather intensely. One of the main goals here is
to extend the analysis performed in [6], [7] for the random energy model to the much more
complicated generalized random energy models. The issue is to reduce the dynamics on the
space of spin configurations to the dynamics of an effective trap model. Work has continued in
collaboration with G. Ben Arous and V. Gayrard, and first significant results can be expected
soon. Another line of work concerns the analysis of trap models as such. Here, J. Černý, in
collaboration with G. Ben Arous and T. Mountford ([8]), has been able to precisely analyze
various autocorrelation functions for Bouchaud’s trap model on the two-dimensional lattice Z2.
In an attempt to better understand the signature of ageing in terms of spectral properties, we
have returned to the analysis of Bouchaud’s REM-like trap model. It turns out that in this
case the generator can be diagonalized explicitly, and precise expressions for eigenvalues and
eigenfunctions can be obtained, which allows to recover all dynamical properties purely from
this spectral information. One also realizes a clear connection between aging exponents and the
singularity in the limiting spectral density of the model.

Over the last years, in collaboration with Nils Berglund, we developed a new approach
to random perturbations of dynamical systems, evolving on two well-separated time scales.
After detailed studies of noise-induced phenomena in one-dimensional slowly time-dependent
systems, [10], [11], [12], first results on fully coupled multidimensional slow-fast systems were
obtained last year. These results provide estimates on the fluctuations of the fast variables near
slow or centre manifolds of the corresponding deterministic system, thus allowing to study a
reduced system ([13]).
This year we turned our attention towards truly multidimensional effects in non-gradient
systems. As a first step we studied the random dynamics near periodic orbits of the
deterministic dynamics, in particular the first-passage time through an unstable periodic orbit.
Passage through an unstable periodic orbit plays a key role in many applications, in particular
in those showing stochastic resonance or synchronization. Examples include climate models,
phase slips in noisy systems of coupled oscillators, and stochastic resonance in lasers.
While on the exponential scale, accessible to the classical Wentzell-Freidlin theory, all points on
an unstable orbit are equally likely to occur as first-exit points, the subexponential asymptotics
of the distribution of first-exit points or times reflects the fact that the unstable orbit is generally
not uniformly repelling. As discovered by Day ([15]), “cycling” occurs: The distribution of
first-exit points rotates around the unstable orbit, periodically in the logarithm of the noise
intensity, and thus does not converge in the zero-noise limit. In [14], we study the distribution
of first-exit times for a class of model equations. A rich picture emerges, showing cycling most
prominently in a metastable time regime, but also during the transitional initial phase and in
the asymptotic regime. Our results cover a large range of possible values for the period of the
unstable orbit, thus providing insight into the transition from the stochastic-resonance regime
into the synchronization regime.
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Gibbs measures of highly disordered systems

Collaborator: A. Bovier

Cooperation with: I. Kurkova (Université Paris VI, France)

Supported by: DFG: Dutch-German Bilateral Research Group “Mathematics of random
spatial models from physics and biology”

The investigation of the Generalized Random Energy Models (GREM) described in last year’s
report ([1], [2]) has been continued this year in [3]. Our aim was to give a more explicit
description of the limiting Gibbs measure of these models. To this end we introduced the notion
of a flow of probability measures and its associated genealogy. In fact, embedding the Gibbs
measure of spin systems together with all its coarse graining in the unit interval, one obtains
naturally such a flow of measures, time playing the role of the scale of the coarse graining. It
turns out that the associated genealogical structure is precisely equivalent to the multi-overlap
structure of the original Gibbs measures. Based on the results of [2] we could then show this
flow converges (in the sense that its genealogy converges) to a flow of probability measures
associated to a particular continuous-state branching process, introduced by J. Neveu (incidently
the same process that was considered in a recent paper by K. Fleischmann and A. Sturm in
another project of our group this year). This yields finally a very satisfactory probabilistic
and geometric description of Gibbs measures of disordered models and highlights an intimate
connection between branching processes and continuous-state branching process.
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Microscopic modeling in financial markets

Collaborators: A. Bovier, J. Černý

Cooperation with: O. Hryniv (University of Cambridge, UK)

Supported by: DFG-Forschungszentrum „Mathematik für Schlüsseltechnologien“ (Research
Center “Mathematics for Key Technologies”), project E1

The main goal of this new project, that is part of the application area E of the DFG Research
Center “Mathematics for Key Technologies”, is to develop and investigate more realistic models
for the dynamics of stock prices that take into account the actual trading mechanisms involved
in the price evolution. In this way one hopes to bring methods and ideas from the theory of
interacting random systems to bear on the theory of price processes in finance ([2]).
An approach based on a Markovian evolution in a space of opinions of traders is presented
in the paper [1]. We have developed an interactive simulation tool that allows to experiment
with a rather large class of model parameters, and some rather interesting features emerge even
with rather simple models involving few parameters. One can, for instance, study the effect of
time-dependent changes in parameters (modeling a changing macro-economic environment) on
the stock price. For example, the following graph shows the reaction to a sequence of bursts of
optimism followed by neutral periods.
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Fig. 1: A sequence of “bubbles”

It also emerges that one can identify a number of very challenging mathematical problems in
the context of interacting particle systems that are relevant and so far little understood. The
further development of the model, its numerical and analytical investigation, and comparison of
statistical properties of the model price processes with real data, offer interesting perspectives
for continued research over the next years.
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2. H. FÖLLMER, Stock price fluctuation as a diffusion in a random environment, Philos.
Trans. Roy. Soc. London Ser. A, 347 (1994), pp. 471–483.



120 4. RESEARCH RESULTS AND APPLIED PROJECTS
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Pairs of interacting catalytic branching processes describe the evolution of two types of materials,
which randomly move, split, and possibly disappear in space. The point is the interaction in
the system: The branching behavior of each material is dependent on the other one.

A main result this year is the construction and investigation of a so-called symbiotic branching
process, [3]. This model generalizes three well-known interacting models: the mutually
catalytic branching model in R of Dawson and Perkins (1998), [2], and Mytnik (1998), [11],
the continuous stepping-stone model of Shiga (1988), [13], and the continuous space Anderson
model (see, for instance, Mueller (1991), [10]). Compared with mutually catalytic branching,
the two types might now be somehow correlated. Basic tools such as self-duality, particle
system moment duality, measure case moment duality, and moment equations are shown to be
still available in this generalized context. As an application, the compact interface property is
derived: Starting from complementary Heaviside states, the interface is compact almost surely
at each time. For the stepping-stone model, such property was known earlier by Tribe (1995),
[15], but for mutually catalytic branching, for instance, this is the first result on the interface
at all. Techniques from [15] are essentially used, except the ones which have been based on
the boundedness of states. Instead of this, some exponential grow of certain moments could be
established, which are now used as a replacement for the original boundedness of states.

Superprocesses under a Brownian flow are studied in [16]. Such processes were first considered
by Skoulakis and Adler (2001), [14], by a moment duality method. As they indicated, it
is natural to study the process under a fixed environment and to make use of the related
conditional log-Laplace transform. This idea is now confirmed in [16]. The conditional
log-Laplace functional is in fact shown to be the unique solution to a nonlinear stochastic partial
differential equation by making use of a particle system representation developed by Kurtz and
Xiong (1999), [8]. This approach has many potential applications.
In [9] the model is governed by a white noise in space-time. Therefore, it also involves
spatial interaction. Further, an immigration mechanism is introduced to the model. In this case,
the conditional log-Laplace functional is the unique solution to a nonlinear SPDE driven by
space-time white noise. As an application, the long-term limit is obtained.

A uniqueness problem raised in Fleischmann and Xiong (2001), [6], for critical cyclically
catalytic super-Brownian motions is solved in [1] in the simplified spaceless case, that is,
for cyclically catalytic branching diffusions X, where, moreover, any correlation between the
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components is allowed (in the sense of symbiotic branching). More precisely, X is characterized
as the unique strong solution of a singular stochastic equation.

A spatial version of Neveu’s (1992), [12], continuous-state branching process is constructed
in [4]. Opposed to earlier superprocesses, here the branching has infinite mean. Construction
is provided by starting from certain supercritical (α,d,β)-superprocesses X(β) with symmetric
α-stable motion and (1+β)-branching and proving convergence on path space of finite measure-
valued cadlag paths as β ↓ 0. The log-Laplace equation related to the new process X, say, has
the locally non-Lipschitz function ulogu as nonlinear term (instead of u1+β in the case of
X(β)). It can nevertheless be shown to be well posed. X behaves quite differently from usual
supercritical spatial branching processes. In fact, it is immortal at all finite times, propagates
mass instantaneously everywhere in space also in the Brownian case α = 2, and it has locally
countably infinite biodiversity.

The phenomenon of multi-scale clustering is verified in [5] for a non-Markovian branching
particle system in Rd in the critical dimension d = α/β, where particles move according to
a symmetric α-stable motion, have a lifetime distribution of finite mean, and branch with an
offspring law of index 1+β, 0 < β≤ 2. This is expressed in an fdd scaling limit theorem, where
initially one starts with an increasing localized population or with an increasing homogeneous
Poissonian population. The limit state is uniform, but its intensity varies in line with the scaling
index according to a continuous-state branching process of index 1 + β. The case α = 2 of
Brownian particles was due to Klenke (1998), [7], where PDE methods had been used which
are not available in the present setting.
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Rarefied gas flows play an important role in applications like aerospace design (space shuttle
reentry), vacuum engineering (material processing, pumps), or, more recently, nanotechnology.
Mathematically such flows are described (in the simplest case of a monatomic gas) by the
Boltzmann equation

∂
∂t

f (t,x,v)+(v,∇x) f (t,x,v) =Z
R 3

dw
Z

S2
deB(v,w,e)

[
f (t,x,v∗) f (t,x,w∗)− f (t,x,v) f (t,x,w)

]
, (1)

where
v∗ = v+e(e,w−v) , w∗ = w+e(e,v−w) . (2)

The solution f (t,x,v) represents the relative amount of gas molecules with velocity v at position
x and time t . The quadratic nonlinearity in (1) corresponds to the pairwise interaction between
gas particles, which consists in the change of velocities of two particles according to (2). Here
S 2 denotes the unit sphere in the Euclidean space R 3 , and B is called the collision kernel,
containing information about the assumed microscopic interaction potential.
A nonlinear equation of similar structure as equation (1) is Smoluchowski’s coagulation equation

∂
∂t

c(t,x) =
1
2

x−1

∑
y=1

K(x−y,y)c(t,x−y)c(t,y)−
∞

∑
y=1

K(x,y)c(t,x)c(t,y) , (3)

where t ≥ 0 and x = 1,2, . . . . It describes the time evolution of the average concentration of
particles of a given size in some spatially homogeneous physical system. The concentration of
particles of size x increases as a result of coagulation of particles of sizes x−y and y. It decreases
if particles of size x merge with any other particles. The intensity of the process is governed by
the (non-negative and symmetric) coagulation kernel K representing properties of the physical
medium. The phenomenon of the coagulation occurs in a wide range of applications, e.g., in
physics (aggregation of colloidal particles, growth of gas bubbles), meteorology (merging of
drops in atmospheric clouds, aerosol transport), chemistry (reacting polymers, soot formation),
and astrophysics (formation of stars and planets).
The purpose of the project is to study the relationship between stochastic interacting particle
systems and solutions of equations of type (1) or (3). On the one hand, results on the asymptotic
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behavior of the particle system (when the number of particles increases) provide insight into
properties of the solution. On the other hand, appropriate stochastic particle systems are used
for the numerical treatment of the macroscopic equation. Stochastic numerical methods provide
results that are subject to random fluctuations. Thus, the construction of algorithms with reduced
fluctuations is an important issue (variance reduction problem).
In recent years a new approach to the variance reduction problem for the Boltzmann equation
(1), called SWPM (stochastic weighted particle method), has been developed. The new method,
which uses a system of weighted particles, has been successfully applied to situations with
strong density gradients (cf. [1]). In [2] convergence of SWPM was studied. First the
method was extended by introducing new stochastic reduction procedures, in order to control
the number of simulation particles. Then, under rather general conditions, convergence to the
solution of the Boltzmann equation was proved. Finally, numerical experiments illustrated both
convergence and considerable variance reduction for the specific problem of calculating tails
of the velocity distribution. The assumptions of the convergence theorem were significantly
weakened in [3], in order to cover deterministic reduction procedures. First steps towards a
new field of applications were taken in [4]. A new stochastic numerical algorithm was derived
for the Boltzmann equation for rarefied granular flows, where collisions between particles are
inelastic.
The topic of studying stochastic models for Boltzmann-type equations has attracted much
interest in recent years. An interesting direction of research is the consideration of more
physical effects. In [5] the stochastic approach to nonlinear kinetic equations (without gradient
terms) has been presented in a unifying general framework, which covers many interactions
important in applications, like coagulation, fragmentation, inelastic collisions, as well as source
and efflux terms. Conditions for the existence of corresponding stochastic particle systems
in the sense of regularity (non-explosion) of a jump process with unbounded intensity are
provided. Using an appropriate space of measure-valued functions, relative compactness of the
sequence of processes is proved, and the weak limits are characterized in terms of solutions
to the nonlinear equation. As a particular application, existence theorems for Smoluchowski’s
coagulation equation with fragmentation, efflux and source terms, and for the Boltzmann
equation with dissipative collisions are derived. Some results concerning clusters containing
several chemical species are presented in [6], [7]. For sufficiently fast increasing coagulation
kernels, there exists the phenomenon of gelation. At the level of the macroscopic equation (3),
the gelation effect is represented by a loss of mass of the solution. An appropriate interpretation
of this phenomenon in terms of stochastic particle systems is of both theoretical and practical
interest. Some conjectures based on detailed numerical observations have been stated in [8].
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4.6 Research Group Stochastic Algorithms and Nonparametric Statistics

4.6.1 Overview

Die Forschungsgruppe bearbeitet innerhalb der
Forschungsprojekte Statistische Datenanalyse,
Angewandte Finanzmathematik und Numeri-
sche Methoden Probleme aus der angewandten
Stochastik und der Finanzmathematik.

The research group works on problems from
applied stochastics and financial mathematics
within the research projects Statistical data
analysis, Applied financial mathematics and
Numerical methods.

Die Forschung der Forschungsgruppe konzen-
triert sich auf Fragestellungen aus der an-
gewandten algorithmisch orientierten Wahr-
scheinlichkeitstheorie und Mathematischen
Statistik, die konstruktive und theoretische
Aspekte statistischer und numerischer Auf-
gabenstellungen beinhalten und durch Kom-
plexitätsuntersuchungen ergänzt werden. Im
Vordergrund stehen dabei Anwendungen in
den Wirtschafts-, Ingenieur- und Lebenswis-
senschaften. Insbesondere geht es um die Mo-
dellierung komplexer Zusammenhänge mit Me-
thoden der nichtparametrischen Statistik, um
die Risikobewertung für Finanzmärkte mit Hil-
fe stochastischer Differentialgleichungen und
um die Effizienz stochastischer Algorithmen.
Auf diesen Gebieten, die sowohl bei der Lö-
sung von Problemen in Technologie und Um-
weltforschung als auch bei der Risikomessung
und Bewertung von Finanzderivaten Anwen-
dung finden, hat sich die Forschungsgrup-
pe in den vergangenen Jahren mit wichtigen
mathematischen Beiträgen und mit der Ent-
wicklung anerkannter statistischer Software ei-
ne führende Stellung erworben.

The research of the research group centers
on topics in applied and algorithmic proba-
bility theory and mathematical statistics that
include methodological and theoretical aspects
of statistical and numerical problems. This is
complemented by investigations of their com-
plexity. The focus is on applications in eco-
nomics, engineering, and life sciences. Of spe-
cial interest are modeling of complex systems
using methods from nonparametric statistics,
risk assessments in financial markets using
stochastic differential equations and the effi-
ciency of stochastic algorithms. In these fields,
which find applications in solving problems
in technology and environmental research as
well as in risk measurement and the evalua-
tion of financial derivatives, the research group
has reached a leading position with important
mathematical contributions and with the devel-
opment of statistical software.

Für das vergangene Jahr wurden in der For-
schungsgruppe folgende Schwerpunkte für die
Arbeit gesetzt:

For the last year the following main topics
were set:
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• Nichtparametrische statistische Metho-
den der Bildverarbeitung (Entrau-
schen, Segmentierung, Thresholding,
Kompression), Analyse von Finanz-
daten, Ökonometrie, Diskriminanzana-
lyse, Dimensionsreduktion, Wavelet
Shrinkage und Clusteranalyse; Anwen-
dungen auf medizinische Bildverarbei-
tung (funktionale und dynamische MRI,
Positron-Emission-Tomographie, EEG-
Zeitreihen), Analyse von Finanzzeitrei-
hen, Klassifikation,

• Nonparametric statistical methods in
imaging processing (denoising, segmen-
tation, thresholding, compression), anal-
ysis of financial data, econometrics, dis-
criminant analysis, dimension reduction,
wavelet shrinkage, clustering; applica-
tions to medical imaging (functional and
dynamic MRI, positron emission tomog-
raphy, EEG time series), analysis of fi-
nancial time series, classification;

• Angewandte Finanzmathematik, spe-
ziell Risikobewertung, Risikomanage-
ment, Zinsmodellierung, Kalibration
und Preisfestsetzung für Nicht-Standard-
Derivate sowie Portfolio-Optimierung
unter Transaktionskosten,

• Stochastische Modelle der numerischen
Mathematik und Monte-Carlo-Methoden
mit Anwendungen auf turbulenten Trans-
port, Nukleations- und Koagulationspro-
zesse, und Lösung von Randwertproble-
men in deterministischer und stochasti-
scher Form.

• Applied financial mathematics, espe-
cially risk evaluation, risk management,
interest rate modeling, calibration and
pricing of non-standard derivatives, and
portfolio optimization in the presence of
transaction costs;

• Stochastic models in numerical mathe-
matics and Monte Carlo methods with
applications to turbulent transport, nucle-
ation and coagulation processes, and to
the solution of boundary value problems
in deterministic and stochastic formula-
tions.

Ein wichtiges Kennzeichen der Forschung in
der Gruppe ist ihr interdisziplinärer Charakter,
der ständige Kooperation und Interaktion zwi-
schen den verschiedenen Projekten voraussetzt.
So erfordert zum Beispiel die effektive Lö-
sung von Problemen des Risikomanagements
die statistische Analyse und das Schätzen von
Parametern für Finanzzeitreihen und den Ein-
satz numerischer Monte-Carlo-Algorithmen zur
Bewertung komplexer stochastischer Funktio-
nale. Weitere Beispiele sind die Anwendung
von Monte-Carlo-Methoden wie Bootstrap zum
Einstellen von Parametern statistischer Verfah-
ren oder die Anwendung statistischer Metho-
den zur Verbesserung der Effizienz von Monte-
Carlo-Verfahren zur numerischen Lösung von
stochastischen Differentialgleichungen.

An important feature of the research in the
group is its interdisciplinary character that re-
quires permanent cooperation and interaction
between the different projects. For instance,
the problem of risk management effectively
involves a statistical analysis and parameter
estimation for financial time series and numer-
ical Monte Carlo algorithms for the evalua-
tion of complex stochastic functionals. Some
more examples are given by applications of
Monte Carlo methods like bootstrap for pa-
rameter tuning in statistical procedures, while
statistical methods can be effectively applied
for improving the efficiency of many Monte
Carlo procedures for the numerical solving of
stochastic differential equations.
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4.6.2 Projects

Statistical data analysis

Collaborators: D. Belomestny, V. Essaoulova, A. Hutt, P. Mathé, D. Mercurio, H.-J. Mucha,
J. Polzehl, V. Spokoiny

Cooperation with: F. Baumgart (Leibniz-Institut für Neurobiologie, Magdeburg), R. Brügge-
mann, Ch. Heyn, U. Simon (Institut für Gewässerökologie und Binnenfischerei, Berlin),
P. Bühlmann, A. McNeil (ETH Zürich, Switzerland), C. Butucea (Université Paris 10, France),
M.-Y. Cheng (National Taiwan University, Taipeh), A. Daffertshofer (Free University of
Amsterdam, The Netherlands), A. Dalalyan (Université Paris 6, France), J. Dolata (Johann
Wolfgang Goethe-Universität Frankfurt am Main), L. Dümbgen (University of Bern, Switzer-
land), J. Fan (Princeton University, USA), J. Franke (Universität Kaiserslautern), R. Friedrich
(Universität Münster), F. Godtliebsen (University of Tromsø, Norway), H. Goebl, E. Haimerl
(Universität Salzburg), A. Goldenshluger (University of Haifa, Israel), I. Grama (Université
de Bretagne-Sud, Vannes, France), J. Horowitz (Northwestern University, Chicago, USA),
B. Ittermann (Physikalisch-Technische Bundesanstalt (PTB), Berlin), A. Juditsky (Université
de Grenoble, France), I. Molchanov (University of Bern, Switzerland), K.-R. Müller (Fraun-
hofer FIRST, Berlin), M. Munk (Max-Planck-Institut für Hirnforschung, Frankfurt am Main),
S.V. Pereverzev (RICAM, Linz, Austria), H. Riedel (Universität Oldenburg), B. Röhl-Kuhn
(Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin), R. von Sachs (Univer-
sité Catholique de Louvain, Belgium), A. Samarov (Massachusetts Institute of Technology,
Cambridge, USA), M. Schrauf (DaimlerChrysler, Stuttgart), S. Sperlich (University Carlos III,
Madrid, Spain), U. Steinmetz (Max-Planck-Institut für Mathematik in den Naturwissenschaften,
Leipzig), P. Thiesen (Universität der Bundeswehr, Hamburg), G. Torheim (Amersham Health,
Oslo, Norway), C. Vial (ENSAI, Rennes, France), Y. Xia (National University of Singapore,
Singapore), S. Zwanzig (Uppsala University, Sweden)

Supported by: DFG: DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (Re-
search Center “Mathematics for Key Technologies”), project A3; SFB 373 “Quantifikation und
Simulation Ökonomischer Prozesse” (Quantification and simulation of economic processes),
Humboldt-Universität zu Berlin; Priority Program 1114 “Mathematische Methoden der Zeitrei-
henanalyse und digitalen Bildverarbeitung” (Mathematical methods for time series analysis and
digital image processing)

The project Statistical data analysis focuses on the development, theoretical investigation
and application of modern nonparametric statistical methods, designed to model and analyze
complex data structures. WIAS has, with main mathematical contributions, obtained authority
for this field, including its applications to problems in technology, medicine, and environmental
research as well as risk evaluation for financial products.
Methods developed in the institute within this project area can be grouped into the following
main classes.

1. Adaptive smoothing (D. Belomestny, V. Essaoulova, A. Hutt, D. Mercurio, H.-J. Mucha,
J. Polzehl, V. Spokoiny).

The investigation and development of adaptive smoothing methods have been driven by
interesting problems from imaging and time series analysis. Applications to imaging include

http://www.wias-berlin.de/project-areas/stat/index.html
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signal detection in functional Magnet Resonance Imaging (fMRI) and tissue classification
in dynamic Magnet Resonance Imaging (dMRI) experiments, image denoising, analysis of
images containing Poisson counts or binary information or the analysis of Positron Emission
Tomography (PET) data.

Our approach for time series focuses on locally stationary time series models. These methods
allow for abrupt changes of model parameters in time. Intended applications for financial time
series include volatility modeling, volatility prediction, and risk assessment.

The models and procedures proposed and investigated at WIAS are based on two main
approaches, the pointwise adaptation, originally proposed in [46] for estimation of regression
functions with discontinuities, and adaptive weights smoothing, proposed in [33] in the context
of image denoising.

The main idea of the pointwise adaptive approach is to search, in each design point, for the
largest acceptable window that does not contradict to the assumed local model, and to use the
data within this window to obtain local parameter estimates. This allows for estimates with
nearly minimal variance under controlled bias.

The general concept behind adaptive weights smoothing is structural adaptation. The procedure
attempts to recover the unknown local structure from the data in an iterative way while
utilizing the obtained structural information to improve the quality of estimation. This approach
possesses a number of remarkable properties like preservation of edges and contrasts and nearly
optimal noise reduction inside large homogeneous regions. It is almost dimension free and is
applicable to high-dimensional situations.

Both ideas have been investigated and applied in a variety of settings.

• Imaging problems: The pointwise adaptive approach has been extended and theoretically
investigated for the denoising of 2D images in [32]. The procedure delivers an optimal (in
rate) quality of edge recovering and demonstrates a reasonable numerical performance.
Adaptive weights smoothing has been generalized to cover locally smooth images in
[36], see Figure 1 for an example, and local likelihood estimation for exponential family
models in [35]. The latter allows, e.g., to handle images containing Poisson counts,
binary or halftone images or images with intensity-dependend gray value distributions.

Fig. 1: Reconstruction of a piecewise smooth image by local polynomial AWS

• Adaptive wavelet thresholding: Modifications of the AWS procedure have been developed
for denoising one- and two-dimensional data via wavelet thresholding. The estimates
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obtained by the AWS procedure turn out to be spatially adaptive. They attain the near
optimal rate of estimation over Besov classes Bs

p,q. The procedure performs well in terms
of the mean absolute error as well as visually. The use of AWS for wavelet thresholding
allows for improved compression rates.

noisy data aws reconstruction SURE thresholding NeighBlock

Fig. 2: Reconstruction of an artificial image by wavelet thresholding using AWS
(Compression rate (CR): 0.031), SURE thresholding (CR: 0.188), and the NeighBlock

method of Cai and Silverman ([4]) (CR: 0.087)

.

• Functional and dynamic magnetic resonance experiments: Adaptive weights smoothing
allows for the analysis of spatio-temporal structures. The methods proposed in [34] have
been tested on fMRI data and dMRI datasets from cardiology.

The use of spatially adaptive smoothing methods allows, in comparison to a voxelwise
decision, for an improved sensitivity and specitivity of signal detection and, in contrast
to nonadaptive approaches, to preserve information about the shape of regions of interest.
Figure 3 provides a comparison for one fMRI series.

Fig. 3: Comparison of signal detection methods in fMRI: voxelwise decision (left),
adaptive spatial smoothing (AWS) (center), and nonadaptive spatial smoothing (right)

• Analysis of bio-signals: Synchronization effects are supposed to play the key role in
information processing in the brain. These effects have been observed in invasive and
non-invasive experimental data ([49]). In order to improve the understanding of intrinsic
neural activity, we study phase synchronization effects in empirical multivariate brain
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signals by a novel segmentation method ([19]). It allows the detection of mutually phase-
synchronized states in multivariate signals. The algorithm combines the k-means cluster
algorithm for toroidal topologies and the statistical estimation of the synchronization
strength [18, 19]. Applications to simulated metastable multivariate time series from
stochastic and chaotic systems reveal its properties successfully. First applications to
brain signals are successful.

• Modeling of financial time series and volatility estimation: Time series models with
varying coefficients are appropriate for a wide range of financial time series. In [26], a
pointwise adaptive approach for volatility modeling of financial time series is developed.
[16] extends this procedure to the case of multidimensional financial time series. Ap-
propriate methods for locally stationary time series are investigated in [9] and [10]. In
[27], the pointwise adaptive approach is applied for the estimation and forecasting of the
volatility of financial time series. The approach is based on the assumption of local ho-
mogeneity: for every time point there exists an interval of time homogeneity in which the
parameters of the volatility model can be well approximated by a constant. The procedure
recovers for each point the maximal interval of homogeneity from the data using a local
change point analysis. Afterwards the estimate of the volatility is simply obtained by local
averaging. The performance of the procedure is investigated both from a theoretical point
of view and through Monte Carlo simulations. The new procedure is applied to some data
sets and compared with the LAVE procedure from [26] and a standard GARCH model.
The numerical results demonstrate a very reasonable performance of the new method.
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Fig. 4: Volatility modeling of the DAX data from 1999 to 2003 by parametric
GARCH(1,1), AWS for semiparametric GARCH(1,1), and local constant volatility AWS

The adaptive weights smoothing approach has been generalized to time varying GARCH
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models and semiparametric GARCH models in [37]. The procedure involves new ideas
on localization of GARCH models. Simulations and applications on financial data show
that phenomena like long-range dependence and heavy tails, which are often considered
as inherent to financial time series, can as well be interpreted by nonstationarity.

Both the semiparametric GARCH(1,1) and the local constant AWS volatility model can
be used to analyze the local stationarity structure. They allow for an improved volatility
prediction and explain the observed heavy tails of the logarithmic returns. Applications
of the methodology are intended in cooperation with the project Applied mathematical
finance.

Figure 4 illustrates volatility estimates obtained for the time series of DAX values.

Nonparametric filters often involve some filtering parameters. These parameters can be
chosen to optimize the performance locally at each time point or globally over a time
interval. In [5], the filtering parameters are obtained minimizing the prediction error for a
large class of filters. Under a general martingale setting, with mild conditions on the time
series structure and virtually no assumption on filters, the adaptive filter with filtering
parameter chosen on the basis of historical data is shown to perform nearly as well as the
one with the ideal filter in the class, in terms of filtering errors. The theoretical result is
also verified via intensive simulations. The approach can be used to choose the order of
parametric models such as AR or GARCH processes. It can also be applied to volatility
estimation in financial economics.

• Tail index estimation: The tail index is used to characterize the tail behavior of a
distribution. This is important, e.g., for extreme value statistics and risk assessment.
The results on tail index estimation will be used in cooperation with the project Applied
mathematical finance.

In [14], the pointwise adaptive approach is extended to tail index estimation. The
approach is based on approximation by an exponential model. The proposed procedure
adaptively selects the number of upper order statistics used in the estimation of the tail
of the distribution function. The selection procedure consists in consecutive testing the
hypothesis of homogeneity of the estimated parameter against the change-point alternative.
The selected number of upper order statistics corresponds to the first detected change-
point. The main results are non-asymptotic and state optimality of the proposed method
in the “oracle” sense.

A similar idea is used for tail index estimation by adaptive weights smoothing in [35].

• Classification: In [35], a spatially adaptive discriminant analysis procedure based on
the local likelihood AWS for binary regression is proposed. This approach is currently
extended using the specific bias-variance decomposition of classification problems. First
simulation results show potential for improvements over [35] and classical procedures.
Figure 5 provides results of a simulation study for three types of classifiers. Illustrated is
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the dependence of the classification error on the main parameter of the procedures.
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Fig. 5: Comparison of classification errors for a simulated example

• Density estimation: An adaptive weights procedure for density estimation has been
obtained using the asymptotic equivalence of density estimation and Poisson regression
([35]). This approach is currently extended to cover piecewise smooth densities, see [15].

• Cluster analysis and data mining: The research has been focused on the validation of
cluster analysis results ([30]). An automatic validation technique that becomes a general
validation tool for all hierarchical clustering methods available in the statistical software
ClusCorr98 is under development. This built-in validation via resampling techniques
is based on the adjusted Rand index applied to contingency tables, which are obtained by
crossing two partitions. Both the appropriate number of clusters can be validated and the
stability of each cluster can be assessed.

Bootstrap samples and subsets are equivalent to the choices of weights of observations.
This is used to make resampling computationally effective. The built-in validation is an
automatic technique with default values for the parameters of the simulations.

Fig. 6: Obtained clusters and summary of validation results for Ward’s method

For illustration purposes observed birth and death rates from 225 countries are investigated.
Ranks are used for hierarchical clustering by Ward’s minimum variance method. The
stability of the result is investigated by random weighting of observations. In doing so,
200 such replicates were clustered by Ward’s method.

Figure 6 illustrates the obtained clusters (left) and the statistics used to validate the result
(right). The unique solution is compared with results from the bootstrap samples by the
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adjusted Rand index R. The axis at the left-hand side and the bars in the graphic are
assigned to the standard deviation of R, whereas the axis at the right-hand side scales
box-plots showing median, mean, upper, and lower 5 percent quantile of R. The median
of R for K = 2 is near to its theoretical maximum value 1. That means, the two cluster
solution is stable. It can be confirmed to a high degree for almost all samples. For more
than two clusters, the median (or mean) of the adjusted Rand values is much smaller.
Therefore the number of clusters K = 2 is the most likely one.

2. Dimension reduction (J. Pohlzehl, V. Spokoiny).

Data sets from economy or finance are often high dimensional. Usually many characteristics
of a firm or an asset are monitored without knowledge which characteristics are needed to
answer specific questions. Data structures often do not allow for simple parametric models.
Nonparametric statistical modeling of such data suffers from the curse of dimensionality
problem (high-dimensional data are very sparse). Fortunately, in many cases structures in
complex high-dimensional data live in low-dimensional, but usually unknown subspaces. This
property can be used to construct efficient procedures to simultaneously identify and estimate the
structure inherent to the data set. The most common models in this context are additive models,
single- and multi-index models and partial linear models. These models focus on index vectors
or dimension reduction spaces which allow to reduce the dimensionality of the data without
essential loss of information. They generalize classic linear models and constitute a reasonable
compromise between too restrictive linear and too vague pure nonparametric modeling.

Indirect methods of index estimation like the nonparametric least squares estimator, or non-
parametric maximum likelihood estimator have been shown to be asymptotically efficient, but
their practical applications are very restricted. The reason is that their evaluation leads to
an optimization problem in a high-dimensional space, see [20]. In contrast, computationally
straightforward direct methods like the average derivative estimator, or sliced inverse regression
behave far from optimally, again due to the “curse of dimensionality” problem.

[17] developed a structural adaptive approach to dimension reduction using the structural
assumptions of a single-index and multi-index model. The method allows for an asymptotically
efficient estimation of the dimension reduction space and of the link function. [47] improves on
these procedures for single- and multi-index models and generalizes it to the case of partially
linear models and partially linear multi-index models.

[45] proposes a new method for partially linear models whose nonlinear component is completely
unknown. The target of analysis is identification of regressors which enter in a nonlinear way
in the model, and complete estimation of the model including slope coefficients of the linear
component and the link function of the nonlinear component. The procedure allows for selecting
the significant regression variables. As a by-product, a test that the nonlinear component is
M -dimensional for M = 0,1,2, . . . is developed. The proposed approach is fully adaptive
to the unknown model structure and applies under mild conditions on the model. The only
important assumption is that the dimensionality of the nonlinear component is relatively small.
Theoretical results indicate that the procedure provides a prescribed level of the identification
error and estimates the linear component with an accuracy of order n−1/2 . A numerical study
demonstrates a very good performance of the method even for small or moderate sample sizes.

3. Statistics for inverse problems (P. Mathé, V. Spokoiny).

Ill-posed equations arise frequently in the context of inverse problems, where it is the aim
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to determine some unknown characteristics of a physical system from data corrupted by
measurement errors.

The problem of reconstructing a planar convex set from noisy observations of its moments is
considered in [12] . An estimation method based on pointwise recovering of the support function
of the set is developed. We study intrinsic accuracy limitations in the shape-from-moments
estimation problem by establishing a lower bound on the rate of convergence of the mean
squared error. It is shown that the proposed estimator is near-optimal in the sense of the order.
An application to tomographic reconstruction is discussed, and it is indicated how the proposed
estimation method can be used for recovering edges from noisy Radon data. This constitutes a
first step to adaptive estimation procedures for Positron Emission Tomography (PET).

For ill-posed problems it is often impossible to get sensible results unless special methods, such
as Tikhonov regularization, are used. Work in this direction is carried out in collaboration with
S.V. Pereverzev, RICAM Linz. We study linear problems where an operator A acts injectively
and is compact in some Hilbert space, and the equation is disturbed by noise. Under a priori
smoothness assumptions on the exact solution x, such problems can be regularized. Within
the present paradigm, smoothness is given in terms of general source conditions, expressed
through the operator A as x = ϕ(A∗A)v, ‖v‖ ≤ R, for some increasing function ϕ, ϕ(0) = 0.
This approach allows to treat regularly and severely ill-posed problems in the same way. The
deterministic theory for such equations was developed in [23, 24], including discretization and
adaptation to unknown source conditions. The statistical setup is more complicated. However,
based on the seminal work by [31], we could also extend this, including several ill-posed
problems as studied by [13, 50]. One is often not interested in the calculation of the complete
solution x, but only in some functional, say, 〈z,x〉 of it, where z is given afore-hand. If this
is the case, then the linear functional strategy, as proposed by Anderssen ([1]) is important.
Previous analysis of this strategy is extended, as carried out in [25] to the present setup.

The analysis of ill-posed problems under general source conditions raises many new issues and
bridges between approximation theory and interpolation theory in function spaces.

Natural inference problems for parameters in stochastic processes lead to ill-posed inverse
problems. A first instance is the problem of nonparametric estimation of the weight measure a
in the stochastic delay differential equation

dX(t) =
(Z 0

−r
X(t +u)da(u)

)
dt+σdW(t), 0≤ t ≤ T,

where σ > 0 is constant and W denotes Brownian motion. In [40], it is shown that this inference
problem for T → ∞ is equivalent to an integral equation with stochastic errors in the kernel
and in the right-hand side, which can be regularized and solved by the Galerkin method. An
adaptive wavelet thresholding method is proposed in [41], which attains the minimax rates for
classes of weight measures a with Lebesgue densities in Besov spaces. An algorithm based
on the wavelet-Galerkin method for general ill-posed linear problems is proposed in [6]. The
problem of estimating the length of the delay in models with continuous weight densities is
treated in [42], where it is related to change-point detection in ill-posed settings.
A surprising fact is that in the classical scalar diffusion model

dX(t) = b(X(t))dt+σ(X(t))dW(t), 0≤ t ≤ T,

ill-posedness arises due to the lack of continuous-time observations. Assuming that b has
regularity s− 1 and σ has regularity s, estimators based on the low-frequency observations
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(X(n∆))0≤n≤N with large N, but arbitrary ∆ > 0 are constructed in [11]. They attain the optimal
minimax rate N−s/(s+3) for σ and N−(s−1)/(2s+3) for b. The significant loss compared to the
situation of high-frequency or continuous-time observations is due to the loss of information
about the continuous path properties. The estimators are based on spectral estimation of the
underlying Markov transition generator and are modified to a larger model class in [43].

4. Monte-Carlo methods and related topics (D. Belomestny, J. Polzehl, V. Spokoiny).

In cooperation with the project Applied mathematical finance a root–N consistent Monte Carlo
estimator for a diffusion density ([28]) has been developed. The approach has been applied
to an environmental problem ([3]) and extended to a large class of models for stochastic
processes in discrete time ([29]). These models allow in particular for realistic estimation of
ruin probabilities in finance.

In [2], new algorithms for the evaluation of American options using consumption processes are
proposed. The approach is based on the fact that an American option is equivalent to a European
option with a consumption process involved. A new method of sequential improvement of an
initial approximation based on step-by-step interchanging between lower and upper bounds is
developed. Various smoothing techniques are used to approximate the bounds in each step and
hence to reduce the complexity of algorithm. The results of numerical experiments confirm
efficiency of the algorithms proposed. Applications are intended within the project Applied
mathematical finance.

Simulation-extrapolation-type estimators in errors-in-variables models are investigated in [38,
39]. These estimates generalize and improve proposals from [7, 48].
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22. P. MATHÉ, S.V. PEREVERZEV, Optimal error of ill-posed problems in variable Hilbert
scales under the presence of white noise, manuscript.

23. , Discretization strategy for ill-posed problems in variable Hilbert scales, Inverse
Probl., 19 (2003), pp. 1263–1277.

24. , Geometry of ill-posed problems in variable Hilbert scales, Inverse Probl., 19 (2003),
pp. 789–803.



138 4. RESEARCH RESULTS AND APPLIED PROJECTS

25. , Direct estimation of linear functionals from indirect noisy observations, J. Com-
plexity, 18 (2002), pp. 500–516.

26. D. MERCURIO, V. SPOKOINY, Statistical inference for time-inhomogeneous volatility
models, to appear in: Ann. Statist.

27. , Estimation of time dependent volatility via local change point analysis, WIAS
Preprint no. 904, 2004.

28. G.N. MILSTEIN, J.G.M. SCHOENMAKERS, V. SPOKOINY, Transition density estimation
for stochastic differential equations via forward-reverse representations, WIAS Preprint
no. 680, 2001, Bernoulli, in print.

29. G.N. MILSTEIN, J.G.M. SCHOENMAKERS, V. SPOKOINY, Forward-reverse representa-
tions for Markov chains, in preparation.

30. H.-J. MUCHA, H.-G. BARTEL, ClusCorr98 — Adaptive clustering, multivariate visual-
ization, and validation of results, to appear in: Proceedings of the 27th Annual Conference
of the GfKl, Springer, Berlin.

31. M.S. PINSKER, Optimal filtration of square-integrable signals in Gaussian noise, Probl.
Inf. Transm., 16 (1980), pp. 52–68.

32. J. POLZEHL, V. SPOKOINY, Image denoising: Pointwise adaptive approach, Ann.
Statist., 31 (2003), pp. 30–57.

33. , Adaptive weights smoothing with applications to image restoration, J.R. Stat. Soc.,
Ser. B, 62 (2000), pp. 335–354.

34. , Functional and dynamic Magnetic Resonance Imaging using vector adaptive weights
smoothing, J.R. Stat. Soc., Ser. C, 50 (2001), pp. 485–501.

35. , Local likelihood modeling by adaptive weights smoothing, WIAS Preprint no. 787,
2002.

36. , Varying coefficient regression modeling by adaptive weights smoothing, WIAS
Preprint no. 818, 2003.

37. , Adaptive estimation for a varying coefficient (E)GARCH model, in preparation.

38. J. POLZEHL, S. ZWANZIG, On a symmetrized extrapolation estimator in linear errors-
in-variables models, Comput. Stat. Data Anal., in print.

39. , On a comparison of different simulation extrapolation estimators in linear errors-
in-variables models, U.U.D.M. Report no. 17, Uppsala University, 2003.

40. M. REISS, Minimax rates for nonparametric drift estimation in affine stochastic delay
differential equations, Stat. Inference Stoch. Process., 5 (2002), pp. 131–152.

41. , Adaptive estimation for affine stochastic delay differential equations, submitted.

42. , Estimation of the delay length in affine stochastic delay differential equations,
submitted.



4.6. RESEARCH GROUP 6 139

43. , Nonparametric volatility estimation on the real line from low-frequency observations,
submitted.

44. H. RISKEN, The Fokker-Planck Equation, Springer, Berlin, Heidelberg, 1996.

45. A. SAMAROV, V. SPOKOINY, C. VIAL, Component identification and estimation in
nonlinear high-dimensional regression models by structural adaptation, WIAS Preprint
no. 828, 2003.

46. V. SPOKOINY, Estimation of a function with discontinuities via local polynomial fit with
an adaptive window choice, Ann. Statist., 26 (1998), pp. 1356–1378.

47. V. SPOKOINY, Y. XIA, Effective dimension reduction by structural adaptation, in
preparation.

48. L.A. STEFANSKI, J.R. COOK, Simulation-extrapolation: The measurement error jack-
knife, J. Am. Stat. Assoc., 90 (1995), pp. 1247–1256.
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tion ökonomischer Prozesse” (Quantification and simulation of economic processes),
Reuters Financial Software, Paris

The central theme of the project Applied mathematical finance is the quantitative treatment of
problems raised by the financial industry, based on innovative methods and algorithms developed
in accordance with fundamental principles of mathematical finance. These problems include
stochastic modeling of financial data, valuation of complex derivative instruments (options),
and risk analysis. The methods and algorithms developed benefit strongly from the synergy
with the projects Statistical data analysis and Numerical methods for stochastic models.

1. Methods for pricing and hedging of non-standard derivatives (D. Belomestny,
A. Kolodko, G.N. Milstein, O. Reiß, J. Schoenmakers).

The valuation of financial derivatives based on arbitrage-free asset pricing involves non-
trivial mathematical problems in martingale theory, stochastic differential equations, and partial
differential equations. While its main principles are established (Harrison, Pliska, 1981), many
numerical problems remain such as the numerical valuation of (multidimensional) American
equity options and the valuation of Bermudan-style derivatives involving the term structure
of interest rates (LIBOR models), [6]. The valuation and optimal exercise of American and
Bermudan derivatives is one of the most important problems both in theory and practice, see,
e.g., [1]. American options are options contingent on a set of underlyings which can be
exercised at any time in some prespecified future time interval, whereas Bermudan options may
be exercised at a prespecified discrete set of future exercise dates. In general, the fair price of
an American- or Bermudan-style derivative can be represented as the solution of an optimal
stopping problem.
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• American options: For the multidimensional American option in a generalized Black-
Scholes framework, this optimal stopping problem can be converted into a free boundary
value problem (Stefan problem). In this context we have developed in [22] a pure Monte
Carlo algorithm for determining the (free) exercise boundary of an American option.
Due to the thus constructed exercise boundary, the option may be priced and hedged
by well-known Monte Carlo simulation of a respective Cauchy boundary value problem.
As such we have a pure Monte Carlo procedure for the solution of a Stefan problem
which may be considered remarkable. For one dimension the main idea is as follows.
Let us suppose that the exercise curve x = g′(t) is known from t̄ ≤ t ≤ T. By using the
free boundary conditions and taking boundary limits of the Black-Scholes PDE and its
time derivative in the continuation region, we have shown that the derivative g′(t̄) can
be expressed in uxxx(t̄,g′(t̄)+) and known quantities ux(t̄,g′(t̄)+), uxx(t̄,g′(t̄)+) which
can be expressed in the PDE coefficients and the pay-off function f . As a result we
may compute numerically the third derivative uxxx via a Taylor expansion by an accurate
enough computation of u(t̄, x̄+ ρhq) in a neighborhood point in the continuation region.
The latter can be done by standard Monte Carlo simulation using the known exercise
curve for t̄ ≤ t ≤ T, see Figure 1. Having g′(t̄), the exercise curve can be extended one
step, g(t̄−h)≈ g(t̄)−g′(t̄)h, and then we proceed in the same way. In [22] this method
is generalized to the multidimensional case.

Fig. 1: Backward construction of the exercise boundary in one dimension

• American options in time-delayed models: In [10] we have started to consider optimal
stopping rules for models driven by stochastic delay differential equations. A natural
application is the valuation of American options where the volatility depends on the past.
For instance the choice

σt = σ
(∥∥∥Xt −

Z 0

−∞
Xt+sρeρsds

∥∥∥
)

postulates that the volatility is driven by the deviation of the current price from an
exponentially weighted average over the past, which is close in spirit to classical chart
techniques. In certain particular cases the models can be described by higher dimensional
Markov diffusion processes with singular diffusion matrix. We study the singular free
boundary value problem occurring in the analytical description of the solution.

• Bermudan-style products: For Bermudan options we have constructed in [18] an efficient
Monte Carlo method for computing a price upper bound. The method is based on a
duality approach for Monte Carlo construction of a Bermudan price upper bound via the
Doob-Meyer martingale part of an approximation of the respective Snell envelope process,
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[15], [36]. In our approach we enclose the theoretical upper bound by approximating
from above with an “up-up” estimator due to Haugh & Kogan and from below by a
newly developed lower estimator, called “up-low” estimator. Both the “up-up” estimator
and the “up-low” estimator require in general simulations in simulations and, as a
consequence, tend to be time-consuming. However, we show that by taking a suitable
convex combination of the lower and upper estimator we can obtain a combined estimator
which requires only a very low number of inner simulations and, as a result, this estimator
has a higher computational efficiency. For an application to the Bermudan swaption,
approximated by the maximum of “still alive” swaptions, see Figure 2, and for more
details, see [18].
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Another new method for constructing an upper bound of the Bermudan/American price
using some lower bound is currently in development. This approach is based on the fact
that an American option is equivalent to a European option with a consumption process
involved. The value of the upper bound V(t,x) at a position (t,x) is constructed by the
Monte Carlo method. Our attention focuses on constructing new numerical procedures and
their practical implementation. The results of numerical experiments confirm efficiency
of the algorithms proposed ([3]).

In an initiated research cooperation with J. Kampen at Heidelberg University, we aim
to value Bermudan-style derivatives in the LIBOR market model based on higher order
approximation of Greenian kernels. The Greenian kernels are connected with the
(high-dimensional) LIBOR process and integration with respect to these kernels will be
implemented on sparse grids.

• Monte Carlo evaluation of Greeks by finite differences: In many cases the price of
an option can be represented as the solution of a Cauchy boundary value problem for
a parabolic PDE. As a consequence, option prices can be computed by Monte Carlo
simulation of a respective system of stochastic differential equations. Derivatives of
the solution, in financial terms called “Greeks”, can in principal be computed by finite
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differences of solutions obtained by Monte Carlo simulation. In [26] it is shown that
this method is effective when in the Monte Carlo simulation the method of dependent
realizations is exploited. An error analysis is given, and numerical experiments are in
agreement with the developed theory. A related Monte Carlo method for computation of
Greeks was previously constructed in [23], see also [35].

2. Robust interest rate (LIBOR) modeling and calibration (O. Reiß, J. Schoenmakers).

Robust calibration of the LIBOR market model, a popular benchmark model for effective
forward interest rates ([5], [17], [28]), to liquidly traded instruments such as caps and swaptions
has been a challenging problem for several years. In particular, calibration methods which avoid
the use of historical data are very desirable, both from a practical and a more fundamental point
of view. The dynamics of the LIBOR model is given by

dLi =−
n−1

∑
j=i+1

δ jLiL j σiσ jρi j

1+δ jL j
dt+Li σidW

(n)
i , (1)

where the LIBOR/EurIBOR processes Li are defined in [t0,Ti ], with δi = Ti+1−Ti being day

count fractions and σi being scalar deterministic volatility functions. Further, (W(n)
i (t) | t0 ≤

t ≤ Tn−1) are correlated Wiener processes under the so-called terminal measure IPn, with
deterministic local covariance structure

< dW
(n)
i ,dW

(n)
j >= ρi j dt.

In order to construct a stable calibration procedure, we first introduce the following economically
motivated parametrization of the scalar volatility and correlation function,

σi(t) := cig(Ti− t)

ρi j (t) := ρ(0)
i−m(t), j−m(t), m(t) := min{m : Tm≥ t},

with a simple parametric function g(s) := g∞ +(1−g∞ +as)exp(−bs), and, for example, one
of the correlation structures developed by Schoenmakers & Coffey in [40], [41], based on some
semi-parametric framework, [19], [39].

ρi j = exp

[
−| j− i|

m−1
(− lnρ∞+

+η
i2 + j2 + i j −3mi−3m j+3i +3 j +2m2−m−4

(m−2)(m−3)

)]
,

η > 0, 0 < η <− lnρ∞.

The thus designed volatility structure relies on sensible assumptions regarding the behavior
of forward rates and implies a kind of time shift invariance when ci ≡ c. Calibration of this
volatility structure to a set of market cap and swaption volatilities comes down to fit the model
cap and swaption volatilities to a rather flat surface of market quotes, see the first picture in
Figure 3.
The LIBOR model is in a sense designed to price cap(let)s in closed form. Indeed, for any
function g and correlation structure ρ(0), caps can be matched perfectly by appropriate choice
of the coefficients ci . However, since caps are in fact one period swaptions, the model swaption
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volatility surface intersects with the market volatility surface at the 1 period swaption line,
regardless of the choice of g and ρ(0). See the second picture in Figure 3 for a model swapvol
surface for some rather arbitrary choice of g and ρ(0). This is in fact an intrinsic stability problem
(see also [37]), since basically two explaining powers are available determining one rotation
angle. We have resolved this problem by introducing economically motivated regularizations
of the least squares object function and implemented the so developed stable procedures for
testing against market data. Meanwhile our calibration methods are gaining interest, appearing
from consulting requests (Reuters FS, Bankgesellschaft Berlin AG) and a currently developing
book project ([38]).
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3. Volatility estimation of financial time series (D. Mercurio, V. Spokoiny).

In cooperation with the project Statistical data analysis, new techniques for the volatility
estimation for financial time series have been developed, [12], [21], [30].

• Locally time-homogeneous volatility estimation: The usual approach to volatility esti-
mation starts from the definition of a parametric model, such as GARCH, and then
fits this model to the data, globally, for example, by maximum likelihood estima-
tion. On the other hand, practitioners usually prefer to focus on the most recent
data, which are perceived as more informative. Therefore, exponentially weighted
moving average and window estimators are often applied in practice. However, the
results of these techniques strongly depend on the choice of the smoothing parameters.
The attempt of the technique proposed in [21] is precisely to put the window estimator
on a sound statistical basis. The most recent window of data on which the estimation
is performed is selected through a multiple testing procedure, where the probability of
rejecting a homogeneous interval is specified. Applications to exchange rate data show
good results. The method is successfully applied to problems of volatility forecasting and
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Fig. 4: Returns and estimated volatility for the JPY/USD exchange rate

• Volatility estimation from discrete observations: Since many artifacts are observed in
high-frequency or tick data during the day, one often uses daily data in historical financial
time series to draw inference on the underlying model parameters. In mathematical
finance the underlying models are, however, usually formulated in continuous time.
Nevertheless, classical methods for estimating the volatility in diffusion-type models are
only asymptotically consistent for observation distances tending to zero. In [12] and
[30], we studied the prototype problem of estimating the drift and diffusion (volatility)
coefficient in a scalar diffusion X from the observation (Xn∆)0≤n≤N for arbitrary ∆ > 0.
We prove optimality of our nonparametric estimation method in a minimax sense for
fixed ∆ > 0 and the asymptotics N → ∞. First simulation results indicate that already
for relatively small observation distances ∆ our method outperforms classical procedures
based on quadratic variation estimation.

4. Methods for risk management (S. Jaschke, D. Mercurio, O. Reiß, J. Schoenmakers,
V. Spokoiny, J.-H. Zacharias-Langhans).

Since the Basel Committee’s proposal for “An internal model-based approach to market risk
capital requirements” (1995) was implemented in national laws, banks have been allowed to
use internal models for estimating their market risk and have been able to compete in the
innovation of risk management methodology. Since all banks are required to hold adequate
capital reserves with regard to their outstanding risks, there has been a tremendous demand
for risk management solutions. A similar “internal ratings-based approach” is planned for the
controlling of credit risk in the “Basel II” process, which is due to be implemented in national
laws by 2006. Meanwhile, credit derivatives play an important role as vehicle for banks to
transform credit risk into de jure market risk and to potentially lower the required reserves.
Such problems of risk measurement and risk modeling are the subject of the research on
“Mathematical methods for risk management”. This research is supported by the BMBF project
“Efficient methods for valuation of risk measures”, which continued in 2003 in cooperation with
the Bankgesellschaft Berlin AG. Problems of both market and credit risk from the viewpoint of
supervisory authorities are being worked on in cooperation with the BAFin.
Although the basic principles of the evaluation of market risks are now more or less settled, e.g.,
[2], [8], [9], [29], in practice many thorny statistical and numerical issues remain to be solved.
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Specifically the industry standard, the approximation of portfolio risk by the so-called “delta-
gamma normal” approach, can be criticized because of the quadratic loss approximation and
the Gaussian assumptions. Further, in the context of the “Basel II” consultations fundamental
questions arise in the area of Credit Risk Modeling.

• Evaluation of market portfolio risk: A procedure is constructed, where a small set of
scenarios is carefully generated according to a target distribution, which approximates
the optimal importance sampling measure adapted to this portfolio, but still reflects small
variations in the components accurately, and is therefore perfectly suited to calculate the
derivatives on a small sample of scenarios. The sample can be generated by a simple
rejection algorithm on a previously generated large sample set, but also by a Markov
chain, similar to the annealed importance sampling scheme with Metropolis-Hastings
kernel, which is also used in the alternative approach. Here, the target distribution is
determined by a weight of the form exp(−θ(L−VaRα)2), approximating for large θ the
condition L = VaRα, see Figure 5.

Fig. 5: Sampling in the area of certain losses

• Evaluation of credit portfolios: The results obtained in cooperation with the BMBF project
“Efficient methods for evaluation of risk measures” for the problem of evaluating market
portfolio risk were our starting point for the study of credit risk portfolios. In particular,
the enhanced Fourier inversion method is adapted for application to the popular credit
risk portfolio model CreditRisk+, proposed by Credit Suisse First Boston (1997) ([7]).
CreditRisk+ is a default-mode model which distinguishes between two states, default
or survival of an obligor within a one-year period. The popularity of CreditRisk+ is
due to the following features. The input data and parameters are readily available. For
instance, default probabilities and recovery rates are required in the context of the Internal
Ratings-Based Approach of the Basel II framework on the regulatory treatment of credit
risk. Furthermore, CreditRisk+ is very appealing from a computational point of view
due to its analytical tractability. In particular, the loss distribution is discrete and its
probability generating function is explicitly known,

G(z) =
∞

∑
n=0

P[X̃ = n]zn (2)

= exp

(
N

∑
i=1

w0,i pi (zνi −1)−
K

∑
k=1

1

σ2
k

ln

[
1−σ2

k

N

∑
i=1

wk,i pi (zνi −1)

])
,
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where νi is the loss exposure of obligor i with average loss probability pi , and wk,i and σk

are economic sector weights and volatilities, respectively. In [32], [33], Fourier inversion
techniques are applied successfully to CreditRisk+ and generalizations of it. Moreover, in
[31], [34], a unified model is proposed which incorporates CreditRisk+ and Delta-normal
as special cases. Further, in [13] we present an alternative numerical recursion scheme
for computing the loss probabilities in (2) of the standard CreditRisk+ model, based
on well-known expansions of the logarithm and the exponential of a power series. We
show that it is advantageous to the Panjer recursion advocated in the original CreditRisk+

document, in that it is numerically stable whereas the Panjer algorithm is known to suffer
from stability problems. Also we show that this stable recursion method can be extended
to a model which incorporates stochastic exposures as proposed by Tasche ([42]).

Based on knowledge of the complete loss distribution one can easily compute different
risk measures such as Value at Risk and Expected shortfall. These risk measures are also
important in the context of stochastic optimization ([14]).

5. Monte Carlo methods in finance (G.N. Milstein, J. Schoenmakers, V. Spokoiny).

Monte Carlo methods are very important in the field of applied mathematical finance, and we
present here some interesting applications.

• Forward-reverse simulation of worse case probabilities: Previously, Milstein, Schoen-
makers and Spokoiny ([25]) developed in cooperation with the project Statistical data
analysis a new transition density estimator for diffusion processes which is basically
root-N consistent for any dimension of the diffusion process. This estimator,

p̂(t,x,T,y) =
1

MNδd

M

∑
m=1

N

∑
n=1

K

(
X

(n)
t,x (t1)−Y

(m)
t1,y (T)

δ

)
Y (m)

t1,y (T), (3)

which does not suffer from the “curse of dimensionality”, is based on forward simulation
of the given process X and reverse simulation of an adjoint process (Y,Y ) which can
be constructed via the (formal) adjoint of the generator of the original process. For
estimating worst-case scenario probability densities in financial applications it is desirable
to have a variation of the method in [25] for discrete time models, which have basically
more potential for modeling heavy tails. To this end we have constructed in [24] the
discrete adjoint process for a large class of discrete time Markov processes such that the
forward-reverse density estimator (3) goes through for such processes as well. Several
financial applications are currently studied in cooperation with the project Statistical data
analysis.

• Variance reduction by Stratification: In cooperation with the project Numerical methods
for stochastic models we have been considering the following problem in [20]. Many
financial portfolios are influenced by a variety of underlyings, but which are only locally
correlated. The valuation of such products leads to high-dimensional integration, but the
integrands possess a small effective dimension.

Prototypically we exhibit the following situation, describing a portfolio of a set
{I1

t , I2
t , . . . , Im

t }, of m underlyings with respective shares w1,w2, . . . ,wm, determining
the present value Vt = ∑m

j=1 w j I
j
t . There are many numerical schemes for the valuation
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of such financial products. Often a reasonable approximation is obtained using the
∆−Γ-normal-method for the forecast of Vt+1 at a future time knowing Vt , given by

Vt+1 ≈Vt +θ+∆y+ 〈Γy,y〉, (4)

with θ,∆, and Γ completely determined by the structure of the portfolio, and y Gaussian
innovations, see [11]. In this case we obtain a quadratic functional in the underlyings.
This remains quadratic when turning to the independent risk factors. Normally, Γ is
sparse.

In this situation, the ANOVA decomposition of the integrand in (4) admits only up to
bivariate contributions, such that it makes sense to apply Monte Carlo methods, which
intrinsically use this information. For the situation at hand, we propose the use of
randomized orthogonal arrays of strength 2 ([4]), which are known to show super-
convergence, i.e. converge faster than usual Monte Carlo. Test calculations based on
real-world data provided by the Bankgesellschaft Berlin AG actually show superiority
above conventional simulations, see Figure 6.
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Fig. 6: Convergence Monte-Carlo (1) vs. orthogonal arrays (2)
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Numerical analysis of complex stochastic models

Collaborators: D. Kolyukhin, A. Kolodko, G.N. Milstein, K.K. Sabelfeld

Cooperation with: T. Foken (Universität Bayreuth), N.O. Jensen (Risoe National Laboratory,
Denmark), V. Kukharets (Obukhov Institute of Atmospheric Physics, Moscow, Russia), O. Kur-
banmuradov (Physical Technical Institute, Turkmenian Academy of Sciences, Ashkhabad),
A. Levykin, I. Shalimova, N. Simonov (Institute of Computational Mathematics and Mathe-
matical Geophysics, Russian Academy of Sciences, Novosibirsk), M. Mascagni (Florida State
University, Tallahassee, USA), A. Onishuk (Institute of Chemical Kinetics and Combustion,
Russian Academy of Sciences, Novosibirsk), O. Smidts (Université Libre de Bruxelles (ULB),
Belgium), M.V. Tretyakov (University of Wales, UK), H. Vereecken (Forschungszentrum (FZ)
Jülich, Institut für Chemie und Dynamik der Geosphäre), T. Vesala, U. Rannik (Helsinki
University, Finland), W. Wagner (WIAS: Research Group 5)

Supported by: INTAS Grant INTAS-99-1501, NATO Linkage Grant N978912, DFG

In 2003, the main research was concentrated on the development of new stochastic models,
methods, and simulation techniques for solving high-dimensional boundary value problems
with random parameters (involving Wiener processes and log-normal random fields). The
developed approach was successfully applied to the transport of gases and particles within plant
canopies and statistically isotropic porous media, potential and elasticity problems, and to the
numerical solution of Smoluchowski equation governing ensembles of diffusing, nucleating, and
coagulating particles under free molecular collision regime. A particular case of interactions
analyzed is related to stochastic Hamiltonian systems and Langevin-type equations based on
symplectic integrators. This approach results in effective numerical methods for stochastic
differential equations used in mathematical finance. Remarkably, the constructed stochastic
Lagrangian model for porous media appears to be the first one developed while the discussion
and different attempts to construct such a model have a long history in the literature. This work
is a result of the cooperation with the Jülich Forschungszentrum (H. Vereecken) and the Free
University of Brussels (O. Smidts). The results of the research of 2003 have been published in
the refereed papers [1], [5], [7], [8], [9], [10], [13], [14], [18], [22], seven WIAS preprints, and
presented in eight talks at international conferences.

In 2003, the EU project INTAS-99-1501 has been successfully finished. In this project, seven
groups from five countries (Finland, Denmark, Germany, Russia, Turkmenistan) have been
working on the development of new measurement instruments for monitoring the gas-aerosol
exchange in the plant canopies. The build-up of the measurement technique was coordinated
by Professor T. Vesala (Helsinki University), and K.K. Sabelfeld (WIAS) was the scientific
coordinator in the simulation models development. A special issue of the journal Boundary-layer
Meteorology with papers stemming from this project is to appear in 2004.

The group has organized (Chairman K.K. Sabelfeld) the IVth IMACS Seminar on Monte Carlo
Methods (September 15–19, 2003, Berlin) which was co-sponsored by WIAS, the Konrad-Zuse-
Zentrum and the DFG. This Seminar is the world’s largest international forum on stochastic
simulation (see also p. 239).
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1. Eulerian and Lagrangian stochastic models for the transport in porous media
(K.K. Sabelfeld, D. Kolyukhin).

Lagrangian stochastic model

The Langevin-type models assume that the trajectory (X(t),V(t)) of a particle is governed by
a stochastic differential equation of Ito type

dXi(t) = Vi dt, (1)

dVi(t) = ai(X(t),V(t), t)dt+σi j (X(t),V(t), t)dBj(t), i = 1,2,3.

The summation convention over the repeated indices is used. Here ai are the drift, and σi j the
diffusion terms, and B j are standard independent Wiener processes.
This kind of models is widely used in atmospheric turbulence simulations (see, e.g., [4], [11],
[15]). The motivation comes from the fact that the characteristic time of the acceleration
correlations is much less than that for the velocity correlations which is the case for the
turbulent flow.
In a porous medium, when dealing with laminar flows we cannot treat the velocity as
turbulent. However, the acceleration direction is highly varying because of the pore structure
inhomogeneity. Therefore, the acceleration and velocity fields can be considered as random
flows, and the Langevin-type equations can be used to describe the Lagrangian dynamics. The
main difference, compared to the turbulence, is that the flow in porous media is extremely
anisotropic, which results in a much more complicated form of the drift and diffusion terms. In
particular, here we do not have this nice and simple diffusion term in the form of a constant C0

coming from the Kolmogorov theory of fully developed turbulence.
Compared to random displacement models (RDM) ([2], [3]), the Langevin-type models involve
more information about the statistics of velocity, e.g., they naturally use the information about
the probability density function (pdf) of the Eulerian velocity field. Indeed, in case the velocity
is incompressible, it is known that the Eulerian pdf pE is related to the coefficients of the
Langevin equation through the well-mixed condition

∂pE

∂t
+ui

∂pE

∂xi
+

∂
∂ui

(ai pE) =
1
2

∂2(bi j pE)
∂ui∂u j

, (2)

where bi j = σikσ jk.
This complicates the model, but wins very important gains: the model is able to describe
the transport in detail for scales inside or compared to the Lagrangian time scale where the
dispersion is not linear, so generally we deal here with a super-diffusion phenomenon ([17]). It
is important that the model enables to evaluate the concentration field not far from the source.
Thus, these models are free of the Fickian hypothesis.
The derivation of the drift and diffusion terms is not simple. So far, even in the well-studied
atmospheric turbulence, there is no theoretical approach which derives uniquely the expressions
for these terms. Therefore, experimental and heuristical information is used to determine the
model. In our case we evaluated the diffusion term from the numerical solution of the flow
equations. We have derived the drift term and the tensor σi j from the well-mixed condition
(2), and via the numerical solution of the following boundary value problem with random
coefficients

∇ [K(r)∇φ(r)] = 0 ,r ∈D (3)
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with the following boundary conditions over the outer surface S

φ(r) = FD(r) ,
∂φ(r)

∂n
= FN(r) ,r ∈ SN . (4)

Here, SD and SN are parts of S where the Dirichlet and Neumann boundary conditions are used,
respectively. FD and FN are given functions over SD and SN. The solution φ(r) of the flow
equation (3) with the boundary conditions (4) determines entirely the time-independent flow
problem in a saturated porous medium because the knowledge of the hydraulic potential φ(r),
everywhere in D and over S , yields the groundwater velocity by applying Darcy’s law.
The hydraulic conductivity K in (3) is a random field, the hydraulic potential φ(r) is therefore
also a random field, and the velocity is a random vector field as well.
A validation of the model developed was made through a comparison of various statistical
characteristics obtained with our method with those known from measurements and direct
numerical simulations. The backward trajectory approach we suggest in [24] for finance models
is used here for variance reduction purpose.

Eulerian stochastic model

Under the assumption of smallness of fluctuations in the hydraulic conductivity we construct
a stochastic Eulerian model for the incompressible flow as a divergence-free Gaussian random
field with a spectral tensor of a special structure derived from Darcy’s law. A randomized
spectral representation is then used to simulate this random field. Numerical results are
compared with the analytical results obtained by the small perturbation expansion in [2], [3].
A series of test calculations confirmed the high accuracy and computational efficiency of the
method. Comparisons with asymptotically exact results show a good agreement.
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Fig. 1: Samples of specific discharge perturbation random fields q1,q2, for the isotropic
hydraulic conductivity. Left picture: the correlation length IY = 1, right picture: IY = 0.5. The

number of harmonics was N = 100.
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Fig. 2: A cloud of 5000 particles ejected by an instantaneous point source at the origin, shown
at the time instant t ′ = 30, σ2

Y = 10−2 (left picture) and σ2
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The samples of the velocity field are constructed by a very fast spectral randomization method
([16]). For illustration, we show here two samples of such a field in Figure 1. The particle
scattering by this velocity field is shown in Figure 2.
The work is done in cooperation with ULB, Brussels, and FZ Jülich, Institute of Chemistry
and Dynamics of the Geosphere, the results are presented in [8], [10]. The backward trajectory
technique developed in our project was also usefully applied by our colleagues in the Statistical
data analysis project.

2. Random Walk methods for the iterative solution of high-dimensional boundary value
problems (K.K. Sabelfeld).

Suppose a homogeneous isotropic medium G with a boundary Γ is given, whose state in the
absence of body forces is governed by the Lamé equation, see, e.g., [16], [21]:

∆u(x)+αgraddivu(x) = 0, x∈G, (5)

where u(x) = (u1(x1, . . . ,xn), . . . ,un(x1, . . . ,xn)) is a vector of displacements, whose components
are real-valued regular functions. The elastic constant α is expressed through the Lamé constants
of elasticity λ and µ: α = λ+µ

µ .
The first boundary value problem for the Lamé equation consists in finding a vector function
u ∈C2(G)∩C(Ḡ) satisfying the boundary condition

u(y) = g(y), y∈ Γ , (6)

where g ∈C(Γ) is a given vector function.

The stochastic algorithm is based on the spherical mean value relation for the general n-
dimensional case, see, e.g., [21].
The regular solutions to the system (5) satisfy the following spherical mean value relation in
S(x, r)

ui(x) =
n

2(n+α)ωn

n

∑
j=1

Z
Ω

(
(2−α)δi j +α(n+2)sisj

)
u j(x+ rs) dΩ(s), (7)
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i = 1, . . . ,n, δi j is the Kronecker symbol, si are the cosine directions of the unit vector s, and
ωn = 2πn/2Γ(n/2) is the area of the surface of Ω = S(0,1), a unit sphere of dimension n.
Standard Monte Carlo walk on spheres process uses this relation so that the transition in the
Markov chain goes from the center of the sphere to its surface ([21]).
We suggest a further development of the method proposed in [23] which is based on a
generalization of the spherical mean value relation for an arbitrary point inside the sphere. This
generalization is written

u(x) =
Z

S(x0,R)

p(y;x)Bu(y)dS(y) ,

where p(y;x) is the probability density for a Wiener process starting in an arbitrary point x
inside the sphere to the point y∈ S(x0,R), and the kernel B is given explicitly in 2D and 3D
cases.
It can be shown that the new method converges much faster compared to the standard walk on
spheres method. Namely, the cost of the new method is log log(|ε|)/ε2 while for the standard
method it is log(|ε|)/ε2. Remarkably, the cost is very weakly dependent on n, the dimension of
the problem. Different modifications of this approach are discussed in [19], [23], [24].
In a cooperation with the group of Professor M. Mascagni (Florida State University, Tallahassee,
USA), the permeability for a complicated geometry of a porous medium is studied to find the
distribution of the velocity field. The methods used are the Decentred Random Walk on Spheres
(DRWS) suggested by K.K. Sabelfeld and I. Shalimova ([24]). In a cooperation with the
Institute of Computational Mathematics and Mathematical Geophysics, Russian Academy of
Sciences, Novosibirsk (Dr. I. Shalimova), an additional validation of the model based on the
DRWS method is made by applying the Random Walk on Boundary process ([20]).

3. Stochastic particle method for the evaluation of Footprint functions (K.K. Sabelfeld).

Forward and backward stochastic Lagrangian trajectory simulation methods are developed to
calculate the footprint and cumulative footprint functions of concentration and fluxes in the
case when the ground surface has an abrupt change of the roughness height. The statistical
characteristics of the stochastic model are extracted numerically from a closure model we
developed for the atmospheric boundary layer. The flux footprint function is perturbed in
comparison with the footprint function for a surface without change in properties. The
perturbation depends on the observation level as well as the roughness change and the distance
from the observation point. It is concluded that the footprint function for a horizontally
homogeneous surface, widely used in the estimation of sufficient fetch for measurements, can
be seriously biased in many cases of practical importance.
Over a horizontally homogeneous surface the flux measured by micrometeorological technique
equals to the surface flux. This principle is used to determine the surface exchange by the eddy
covariance (EC) technique ([4]). The flux footprint function links the surface emissions to the
observed fluxes above surface at EC measurement level. The footprint function is therefore
used to estimate a distance required to make reliable EC measurements, i.e. if the horizontal
extent of underlying surface of interest is sufficient to determine its exchange rate. Extended
tower measurements of fluxes over forests have been used during the last ten years to obtain
detailed information on carbon and water exchanges between forest canopies and atmosphere.
Large areas of forest, however, are not common in Europe nor in the USA. The footprint models
based on analytical diffusion theory as well as Lagrangian stochastic simulation of an ensemble
of fluid parcel trajectories assume a horizontally homogeneous surface. For forest canopies the
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footprint models involve a number of uncertainties originating from the parametrization of the
canopy turbulence features. Such models are frequently applied to estimate the contribution
of an area of certain upwind distance, or to estimate the fetch to ensure that the given area
contributes a certain percent to the observed flux, by vaguely assuming that the footprint
function for a horizontally homogeneous surface is a good approximation for a more complex
situation with changes in the surface properties. In reality changes in the surface roughness
can be very drastic, for example in the case of forest and field interface. Also the thermal
inhomogeneities induced by albedo and repartitioning of available energy into sensible and
latent heat fluxes can be significant, this will be analyzed, however, in the future work. So we
deal here with pure mechanical turbulence caused by the surface roughness.
The governing equations involve the closure model for the mean flow and stochastic differential
equations for the Lagrangian trajectories. There exists a variety of closure models for
turbulent mixing, ranging from constant eddy coefficient parametrization to detailed Large
Eddy Simulations and Direct Numerical Simulation. We assume that the mean profiles in the
boundary layer of atmosphere are described by the following system:

u
∂u
∂x

+w
∂u
∂z

=
∂
∂z

k
∂u
∂z

+ f (v−Gsinα),

(8)

u
∂v
∂x

+w
∂v
∂z

=
∂
∂z

k
∂v
∂z
− f (u−Gcosα)

is the momentum equation, where the Coriolis parameter is given by f = 2Ωsinϕ, Ω =
7.2910−5s−1, G is the geostrophic wind, and ϕ is the angle between the x-axis and the isobare;
α is the angle between the x-axis and the direction of the geostrophic wind. Further,

∂u
∂x

+
∂w
∂z

= 0

is the continuity equation, where k is the turbulent exchange coefficient for the momentum.
The balance of the kinetic energy is written as

u
∂b
∂x

+w
∂b
∂z

= αb
∂
∂z

k
∂b
∂z

+k

[(∂u
∂z

)2
+

(∂v
∂z

)2
]
− ε̄, (9)

where ε̄ = cb2

k is the mean rate of dissipation of the turbulent energy, c = 0.0286, αb≈ 0.7.
The functions k and b are related through

l =
( 1

κz
+

1
l0

)−1
, k = Ckl

√
b, (10)

with κ≈ 0.4, l0 = 100 m, Ck = 0.41. Thus our system of governing equations consists of (8),
(9), and the relation (10).
The functions vary in the layer z0 ≤ z≤ h, h being the height of the boundary layer, and
z0 the roughness height. The system of equations is considered with the following boundary
conditions:

u = 0, v = 0,w = 0, at z= z0,
u = Gcosα, v = Gsinα at z= h, x≤ 0,
∂u
∂z = ∂v

∂z = 0 at z= h, x > 0 ,
∂b
∂z = 0 at z= z0, and b = 0 at z= h .
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At z= z0, we take l = κz0.
We present the backward estimators for the evaluation of footprint functions in the case of the
boundary layer with the sources uniformly distributed over the strips Di , i = 1, . . . ,nsr. For
simplicity, we have taken the x-axis coincident with the direction of the geostrophical wind, i.e.
α = 0.
The backward trajectory starts at time t, at the detector point with the velocity sampled from
the Eulerian velocity pdf pE(u,x) which is assumed to be Gaussian. Below, we denote by
ūEk the k-th component (k = 1,2,3) of the mean Eulerian velocity vector, and the hat over
the symbols x and u is to indicate that this is a finite-difference approximation to the true
Lagrangian trajectory.
The backward trajectory simulation is conveniently carried out through the semi-implicit Euler
scheme, which can be written for one time step as follows:

x̂k(t−∆t) = x̂k(t)− (û′k(t)+ ūEk(t, x̂(t))∆t,

û′k(t−∆t) = û′k(t)− â′k(t, x̂(t−∆t), û(t))∆t +
√

C0ε̄(t−∆t, x̂(t−∆t))∆t ηtk,

where ηtk, k = 1,2,3, are independent standard Gaussian random variables. Here for a reason
of practical convenience, we work in the “primed” velocity variables û′k = ûk− ūEk, so that

dx̂k = (û′k + ūEk)ds ,

dû′k = â′k ds+
√

C0ε̄
←
d Wk(s), s< t, k = 1,2,3,

with the condition that the trajectory starts at the detector position with the velocity sampled
from the Gaussian pdf pE. The form of all the input function is given explicitly, see [9], and
←
d Wk(s) stands for the backward Wiener differential (see [11]) which implies for the Euler
scheme that the increments are taken back in time.
Let τi j be the time at which the trajectory (x̂(s), û(s)), s≤ t, reaches the ground surface and
touches the i-th strip: the first touchdown at τi1, the second (after a reflection from the boundary)
at τi2, etc., and the last one at τiNi . The random estimators have the following form, for the
concentration,

ci =

〈
Ni

∑
j=1

2
∆i

1
|û3(τi j )|

〉
,

and for the vertical flux:

qiz =

〈
Ni

∑
j=1

2
∆i

û3(t)
|û3(τi j )|

〉
, i = 1, . . . ,nsr.

Here ∆i are the widths of the surface strips ejecting the particles, and the angle brackets stand
for the averaging over the ensemble of independent backward trajectories.
A sensitivity analysis is made for the footprint functions under perturbation of the roughness
height; two cases are considered: (1) smooth-to-rough, and (2) rough-to-smooth change of the
roughness height. The calculations show that the footprint function of concentration is more
sensitive than that of the vertical flux.
It is concluded that the footprint and cumulative footprint functions of concentration for
a horizontally homogeneous surface, widely used in the estimation of sufficient fetch for
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measurements, can be seriously biased in many cases of practical importance. The calculations
show that the footprint area based on the cumulative concentrations, if estimated through
the homogeneous case, can be essentially under- or overestimated, compared to the true
inhomogeneous case.
The work is done in cooperation with Prof. Dr. T. Vesala and Dr. U. Rannik (Helsinki Uni-
versity, Finland), N.O. Jensen (Risoe National Laboratory, Denmark), V. Kukharets (Obukhov
Institute of Atmospheric Physics, Moscow, Russia), O. Kurbanmuradov (Physical Technical
Institute, Turkmenian Academy of Sciences, Ashkhabad, A. Levykin (Institute of Computational
Mathematics and Mathematical Geophysics, Russian Academy of Sciences, Novosibirsk).

4. New stochastic particle methods for the Smoluchowski coagulation equation: Variance
reduction and error analysis (A. Kolodko, K.K Sabelfeld).

In the stochastic models for the simulation of coagulation equation it is well known that the
decrease of the number of particles in a model system is the main source of the variance increase
([6]). To overcome it, H. Babovsky has suggested to transform the standard Smoluchowski
equation (governing the particle concentration) to the mass-flow equation

∂gl (t)
∂t

=
l−1

∑
i=1

1
i
Ki(l−i)gigl−i−gl ∑

i≥1

1
i
Kli gi , l ≥ 1; where gl (t) = lul (t).

Stochastic algorithms for this equation keep the number of particles fixed during the whole time.
This approach has also another nice property: the number of large particles decreases slower
than in the traditional Bird’s algorithm. One may expect that these features should drastically
increase the variance.
However, the distribution of small and large particles in mass-flow systems is still far from
being uniform. In fact, even in the case of constant coagulation coefficients Ki j = 1 the decrease
of particle concentration with the growth of size l (for any fixed time t) is exponential:

ul (t) = (1+0.5t)−2
(

1− 1
1+0.5t

)l−1

.

Note that for the unbounded coagulation kernels the relative number of large particles is even
smaller.
Therefore, it is reasonable to introduce a weight function w(l) increasing with the growth of
l , and to transform the original Smoluchowski equation to a “weight equation” for the new
variable, the weighted concentration zl (t) = w(l)ul (t). This weight equation reads obviously

∂zl (t)
∂t

=
1
2 ∑

i+ j=l

K̂i j zizj −zl ∑
i≥1

K̂li
w(l)

w(i + l)
zi , l ≥ 1; K̂i j = Ki j

w(i + j)
w(i)w( j)

.

To solve this equation, we develop a generalization of the method of fictitious jumps (MFJ).
Together with this algorithm, we construct a generalization of the method of majorant frequencies
(MMF). Though the latter algorithm can be treated as the particular case of the former, it is
very important itself.
We apply the method developed to simulate a coagulation-evaporation process of aerosol
particles in free molecule collision regime.
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Consider a coagulation-evaporation process in a free molecule regime, which is governed by
the equation

∂u1(t)
∂t

=−u1 ∑
i≥1

Ki1ui + ∑
i≥3

Eiui +2E2u2,

∂ul (t)
∂t

=
1
2 ∑

i+ j=l

Ki j uiu j −ul ∑
i≥1

Kli ui−El ul +El+1ul+1, l ≥ 2

with

Ki j =
(

3
4π

) 1
6
(

6kT
ρp

) 1
2
(

1
i
+

1
j

) 1
2 (

i
1
3 + j

1
3

)2
;

E j = EK1 j exp
(

A
(

j
2
3 − ( j−1)

2
3

))
.

Here k is Boltzmann’s constant, T is the absolute temperature, ρp is the particle density, and
we suppose monodisperse initial conditions:

u1(0) = u(0); ul (0) = 0, l > 1.

The question we are interested in is how the values of the evaporation parameters influence the
behavior of the process, in particular, we study the total concentration of all particles whose
sizes are larger than a given size j∗: c j∗(t) = ∑

i≥ j∗
ui(t).

The work is done in cooperation with W. Wagner (WIAS, Research Group 5) and A. Onishuk
(Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk).

5. A probabilistic approach to the solution of complicated problems of mathematical
physics (G.N. Milstein).

The numerical evaluation of Wiener integrals is an important and difficult task. Many approaches
are proposed for solving this problem. As a rule, the known numerical methods reduce a path
integral to a high-dimensional integral which is then approximated using either conventional
deterministic or Monte Carlo methods. The high dimension of these integrals makes the
calculations of the Wiener integrals extremely difficult.
We developed a numerical integration of stochastic differential equations together with the
Monte Carlo technique to evaluate conditional Wiener integrals of exponential-type functionals.
An explicit Runge-Kutta method of order four and implicit Runge-Kutta methods of order two
were constructed. The corresponding convergence theorems are proved. To reduce the Monte
Carlo error, a variance reduction technique is considered. The effectiveness of the constructed
algorithms allowed us to evaluate the conditional Wiener integrals for a large dimension. Results
of numerical experiments are in good agreement with the theory.
Nonlinear PDEs are mostly investigated by numerical methods, which are traditionally based on
deterministic approaches. In [1] we propose an approximation method based on a probabilistic
approach for the three-dimensional system of Navier-Stokes equations with spatial periodic
boundary conditions. The method exploits the ideas of weak-sense numerical integration of
stochastic differential equations. Despite the probabilistic nature, this method is nevertheless
deterministic. The probabilistic approach takes into account a coefficient dependence on the
space variables and a relationship between diffusion and advection in an intrinsic manner. In
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particular, the derived method allows us to avoid difficulties stemming from highly varying
coefficients and strong advection.
Numerical methods for stochastic Hamiltonian systems and Langevin-type equations based on
symplectic integrators were further developed with an analysis of stability problems of stochastic
dynamics.
In [13], [14], specific methods for stochastic Hamiltonian systems and Langevin-type equa-
tions are proposed. Stochastic Hamiltonian systems, like deterministic Hamiltonian systems,
possess the property of preserving symplectic structure (symplecticness). A lot of attention in
deterministic numerical analysis has been paid to the symplectic integration of Hamiltonian
systems. This interest is motivated by the fact that symplectic integrators in comparison with
usual numerical schemes allow us to simulate Hamiltonian systems for very long time intervals
with high accuracy. Symplectic methods for stochastic Hamiltonian systems proposed in [13]
have significant advantages over standard schemes for SDEs as well.
It is natural to expect that making use of numerical methods, which are close, in a sense, to
symplectic ones, also has some advantages when applying them to stochastic systems close to
Hamiltonian ones. An important and fairly large class of such systems is the Langevin-type
equations. The Langevin-type equations have a widespread occurrence in models from physics,
chemistry, and biology. In [14] we construct special numerical methods which preserve some
specific properties of the Langevin-type equations. The proposed methods are such that they
degenerate to symplectic methods when the system degenerates to a Hamiltonian one, and their
law of phase volume contractivity is close to the exact one. The presented numerical tests of
both symplectic and quasi-symplectic methods clearly demonstrate superiority of the proposed
methods for very long time intervals in comparison with existing standard methods. Different
examples of stochastic differential equations used in mathematical finance are now analyzed by
this approach to find an optimal numerical method with small variance.
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4.7 Research Group Continuum Mechanics

4.7.1 Overview

In der Forschungsgruppe „Kontinuumsmecha-
nik“ wurde die Forschung in zwei Problem-
klassen fortgeführt:

• Modellierung deformierbarer poröser
Medien,

• Thermodynamische Modellierung und
Simulation von Phasenübergängen.

Auf dem Gebiet der Modellierung von porösen
Medien konzentrierte sich die Forschung auf
zwei Probleme:

Within the research group “Continuum Mech-
anics” there has been a continuation of studies
on two different classes of problems:

• Modeling of deformable porous media;

• Thermodynamic modeling and simula-
tions of phase transitions.

Within the field of modeling of porous media
the research concentrated on two problems:

1. Ausbreitung von Oberflächenwellen in ge-
sättigten poroelastischen Körpern.
Der gesamte Frequenzbereich (0,∞) wurde nu-
merisch untersucht.

1. Propagation of surface waves in saturated
poroelastic bodies.
The full frequency regime (0,∞) has been in-
vestigated numerically.

2. Thermodynamische Grundlagen für die Mo-
dellierung gesättigter poroelastischer Körper.
Es wurde ein nichtisothermes, nichtlineares
Modell mit einer Porositätsbilanz für solche
Materialien konstruiert.

2. Thermodynamic foundations for modeling
saturated poroelastic bodies.
The full nonisothermal nonlinear model of such
materials with a porosity balance equation has
been constructed.

Im Bereich Thermodynamische Modellierung
und Simulation von Phasenübergängen gab es
folgende Aktivitäten:

Within the area of Thermodynamic modeling
and simulations of phase transitions, there have
been the following activities:

1. Phasenübergänge, teilweise gefördert im
BMBF-Programm Neue Mathematische Ver-
fahren in Industrie und Dienstleistungen unter
03DRM3B5.
Die Studien über Phasenübergänge wurden an
drei Unterprojekten durchgeführt: 1. Das bisher
benutzte Phasenfeldmodell zur Simulation von
morphologischen Phasenänderungen in Lotma-
terialien, die in mikroelektronischen Bautei-
len eingesetzt werden, wurde geändert und er-
weitert. 2. Das Modell zur Bestimmung von
thermodynamischen Gleichgewichten, Diffusi-
onsprozessen und der Simulation von arse-
nischen Ausscheidungen in semiisolierendem
GaAs wurde vervollständigt. 3. Wir haben mit
einer sorgfältigen Studie über die Grinfeld-
Instabilität begonnen.

1. Phase transitions, partly funded within the
BMBF program New Mathematical Methods
in Industry and Services under 03DRM3B5.

The study on phase transitions has focused
on three subprojects: 1. The previously used
phase-field model to simulate morphological
phase changes in solder materials for micro-
electronic devices has been changed and ex-
tended. 2. The model for the determination of
thermodynamic equilibria, diffusion processes,
and the simulation of arsenic precipitations in
semi-insulating GaAs has been completed. 3.
We have started a careful study on the Grinfeld
instability.
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2. Multiskalen Modellierung, Mikro-Makro-
Übergänge in der atomaren Kette für ver-
schiedene Skalierungen, gefördert im DFG-
Schwerpunktprogramm SPP 1095 Analysis,
Modellbildung und Simulation von Mehrska-
lenproblemen.
Die Studie zur Multiskalenmodellierung ist ein
gemeinsames Projekt mit J. Sprekels, und es
gibt eine Kooperation mit A. Mielke (Univer-
sität Stuttgart). Die atomare Kette dient als
Beispiel, wo die Möglichkeit rigoroser Multi-
skalenübergänge diskutiert wird.

2. Multiscale modelling, Micro-macro-transi-
tion in the atomic chain for various scalings,
funded within the DFG Priority Program SPP
1095 Analysis, Modelling and Simulations of
Multiscale Problems.
The study on multiscale modeling is a joint
project with J. Sprekels and his group and a
collaboration with A. Mielke (University of
Stuttgart). The atomic chain serves as an ex-
ample, where the possibility of rigorous micro-
macro transitions for various scalings is dis-
cussed.

3. Hyperbolische Erhaltungsgleichungen, Ki-
netische Lösungen der Boltzmann-Peierls-
Gleichung und ihrer Momentensysteme, geför-
dert im DFG-Schwerpunktprogramm ANumE
— Analysis und Numerik von Erhaltungsglei-
chungen.
Die Behandlung von hyperbolischen Anfangs-
und Randwertproblemen wurde vervollstän-
digt mit einer Studie der Boltzmann-Peierls-
Gleichung und der relativistischen Euler-
Gleichungen.

3. Hyperbolic conservation laws, Kinetic so-
lutions of the Boltzmann Peierls equation and
its moment systems, funded within the im DFG
Priority Program ANumE — Analysis and Nu-
merics of Conservation Laws.

The treatment of hyperbolic initial and bound-
ary value problems has been completed with a
study of the Boltzmann Peierls equation and of
the relativistic Euler equations.

4. Stabilität entnetzender Polymerfilme.
In dieser Berichtsperiode haben wir verschiede-
ne Studien über dünne Filme begonnen, insbe-
sondere wurde die Stabilität von Entnetzungs-
prozessen im Detail untersucht.

4. Stability of dewetting polymer films.
During the period of this report we have started
various studies on thin films, in particular the
stability of dewetting polymer films was inves-
tigated in detail.

5. Numerische Untersuchungen der von Kar-
man’schen Plattengleichungen.
Das industriell geförderte Projekt zur Span-
nungsanalyse von dünnen Platten hatte als
Schwerpunkte (i) Spannungsanalyse von recht-
winkligen Platten, und (ii) Numerische Subtili-
täten betreffend das Babuska-Paradox.

5. Numerical aspects of the von Karman plate
equations.
The industry supported project on Stress anal-
ysis of thin plates focused on (i) stress analysis
of rectangular plates and (ii) numerical sub-
tleties regarding the Babuska paradox.
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4.7.2 Projects

Wave properties of four models describing poroelastic media

Collaborators: B. Albers, K. Wilmanski

Cooperation with: C. Lai (European Centre for Training and Research in Earthquake Engi-
neering, Pavia, Italy), R. Lancellotta (Politecnico di Torino, Italy)

In this project (see: [1]) we investigate the propagation of bulk waves within the frame
of four different linear two-component models of poroelastic materials. In the last year it
has been shown by Wilmanski [3] that Biot’s model may follow from a general nonlinear
thermodynamical model solely in the case when such a nonlinear model contains a constitutive
dependence on the porosity gradient and, if needed, on some other higher gradients. A full
linear model following from such a generalization is as follows.
We have the set of balance equations

∂ρS

∂t
= −ρS

0 divvS,
∂ρF

∂t
=−ρF

0 divvF ,

ρS
0

∂vS

∂t
= divTS+ p̂+ρS

0bS,

ρF
0

∂vF

∂t
= divTF − p̂+ρF

0 bF ,

∂(n−nE)
∂t

=−Φdiv
(

vF −vS
)

+ n̂.

The index 0 refers to a reference value of a quantity. In these equations the symmetric tensors
TS,TF are partial Cauchy stresses, p̂ is the momentum source, bS,bF are partial body forces,
nE is the so-called equilibrium porosity, Φ is the transport coefficient of porosity, and n̂ is the
porosity source.
These balance equations transform into field equations if we add constitutive relations. For
poroelastic materials they are assumed to have the form

TS = TS
0 +λSe1+2µSeS+Qε1, e := treS, ε :=

ρF
0 −ρF

ρF
0

,

TF = TF
0 +ρF

0 κε1+Qe1, nE = n0 (1+δe) ,

p̂ = π
(

vF −vS
)
−Ngradn.

Certainly, the effective (macroscopic) parameters λS, µS correspond to classical Lamé constants,
κ describes the macroscopic compressibility of the fluid, δ is a parameter coupling equilibrium
changes of porosity with volume changes of the skeleton e, and Q is the coupling parameter
introduced by Biot. The permeability coefficient π is related to the permeability appearing in
the Darcy model of seepage. If the contribution of the porosity gradient which is characterized
by the material parameter N is zero, the model is identical with the one proposed by Biot
provided that we neglect in Biot’s model added mass effects (relative accelerations). It has
been shown that, for a class of granular materials for which one can apply Gassmann relations
between macroscopic and microscopic (true) material parameters, Biot’s model as a particular
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case with N = 0 is thermodynamically admissible. Consequently we may describe a porous
material either by a model with N 6= 0 and corresponding generalizations of Gassmann relations
or by a model with N = 0 (Biot) with classical Gassmann relations.
We have also two other possibilities in which Biot’s coupling between partial stresses described
by the material parameter Q does not appear. Such a model has been introduced some ten years
ago (see, e.g., [4], where both the model and some results for waves are presented) and its
structure is similar to the so-called simple mixtures of fluids [2]. This model follows from Biot’s
model in which we substitute Q = 0 or from the full model with Q = 0 , N = 0. The results
are not the same because the simplified model does not admit simple tests yielding Gassmann
relations. Consequently, we may use either classical Gassmann relations if we consider the
simplified model to be a particular case of Biot’s model or generalized Gassmann relations if
we consider the simplified model to be a particular case of the full model.
Wave analysis within the simplified model is much simpler than within Biot’s model or the
full model. This concerns particularly surface waves. It is desirable to know whether such an
analysis may describe—at least qualitatively—wave properties which would follow from more
general models.
We compare numerical results for the above-mentioned four possibilities. It is demonstrated that
both speeds of propagation of P1, S, and P2 waves and their attenuations differ qualitatively
but not quantitatively for different models. For porosities appearing in applications to soils
(n0 ∼ 0.15÷0.4), these numerical differences are smaller than 10 % (see figure below). Due to
a rather poor accuracy of dynamical measurements in real soils, this discrepancy seems to be
acceptable.

Fig. 1: Front velocity of the P1 wave for four different models
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Numerical analysis of surface waves on impermeable boundaries of a poroelastic medium

Collaborators: B. Albers, K. Wilmanski

Cooperation with: C. Lai (European Centre for Training and Research in Earthquake Engi-
neering, Pavia, Italy), R. Lancellotta, S. Foti (Politecnico di Torino, Italy)

The project is the continuation of the theoretical research on surface waves on the basis of the
model by Wilmanski [5]. Here, the dispersion relation for surface waves on an impermeable
boundary of a fully saturated poroelastic medium is investigated numerically in the whole range
of frequencies. To this aim the linear simplified model of a two-component poroelastic medium
is used. Similarly to the classical Biot model, it is a continuum mechanical model but it is
much simpler due to the lack of coupling of stresses. The general dispersion relation has been
ascertained, and results of an earlier work [6] for the high and low frequency approximations
have been recalled. The main part of the project concerns numerical aspects: first we indicate
the applied numerical procedure and then we illustrate the numerical results for the normalized
velocities and attenuations of the Rayleigh and Stoneley waves, [1, 2]. It is known that surface
modes of propagation in linear models result from the combination of bulk modes. Physically,
this means that at any point of the boundary classical longitudinal and shear waves combine into
the Rayleigh wave which must be slower than both bulk waves. The presence of the second
longitudinal bulk wave P2 yields the existence of the second surface mode—the Stoneley
wave which should be slower than the P2 wave—the slowest of bulk waves. Both quantities,
velocities and attenuations, are shown for different values of the bulk permeability coefficient
π, in different ranges of frequencies. A decay of the Rayleigh wave velocity, mentioned in
[3], has been confirmed in the range of small frequencies in spite of the lack of static coupling
between components. Moreover, we compare the behavior of the two types of surface waves
with the behavior of two bulk waves: P1 and P2.
Here, we only show a part of the project, namely the governing equations, the boundary
conditions, and the numerical results for a chosen value of the permeability coefficient:

Model
Within the linear model of a two-component poroelastic saturated medium the process is
described by the macroscopic fields ρF (x,t) – partial mass density of the fluid, vF (x,t) –
velocity of the fluid, vS(x,t) – velocity of the skeleton, eS(x,t) – symmetric tensor of small
deformations of the skeleton and the porosity n. These fields satisfy the following set of linear
equations

∂ρF

∂t
+ρF

0 divvF = 0,
∣∣∣ρF−ρF

0
ρF

0

∣∣∣¿ 1,

ρF
0

∂vF

∂t
+κgradρF +βgrad (n−nE)+ p̂ = 0, p̂ :=π

(
vF −vS

)
,

ρS
0

∂vS

∂t
− div

(
λS

(
treS

)
1+2µeS+β(n−nE)1

)
− p̂ = 0,

∂eS

∂t
= symgradvS,

∥∥∥eS
∥∥∥¿ 1, nE := n0

(
1+δ treS

)
,

∂(n−nE)
∂t

+Φdiv
(

vF −vS
)

+
n−nE

τ
= 0,

∣∣∣n−n0
n0

∣∣∣¿ 1.
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Here ρF
0 ,ρS

0,n0 denote constant reference values of partial mass densities, and porosity, re-
spectively, and κ,λS,µS,β,π,τ,δ,Φ are constant material parameters. The first one describes
the macroscopic compressibility of the fluid component, the next two are macroscopic elastic
constants of the skeleton, β is the coupling constant, π is the coefficient of bulk permeability,
τ is the relaxation time, and δ, Φ describe equilibrium and nonequilibrium changes of porosity,
respectively. For the purpose of this work we assume β = 0.

Boundary conditions
In order to determine surface waves in a saturated poroelastic medium we need conditions for
z= 0. In the general case of a boundary between a saturated porous material and a fluid the
boundary conditions were formulated by Deresiewicz & Skalak. We quote them here in a
slightly modified form and for an impermeable boundary

T13|z=0 ≡ TS
13

∣∣∣
z=0

= µS

(
∂uS

1

∂z
+

∂uS
3

∂x

)∣∣∣∣∣
z=0

= 0,
∂
∂t

(
uF

3 −uS
3

)∣∣∣∣
z=0

= 0,

T33|z=0 ≡ (TS
33− pF)

∣∣∣
z=0

= c2
P1ρS

0

(
∂uS

1

∂x
+

∂uS
3

∂z

)
−2c2

SρS
0

∂uS
1

∂x
−κ

(
ρF −ρF

0

)
∣∣∣∣∣
z=0

= 0,

where uS
1,u

S
3 are x and z components of the displacement uS, respectively, and uF

3 the z
component of the displacement uF .

Results for velocities and attenuations
Velocities Attenuations

Fig. 1: Numerical results for normalized velocities and attenuations of Rayleigh and Stoneley
waves, each for a small frequency range (left) and a large frequency range (right) for the

permeability coefficient: π = 107 kg
m3s

Conclusions
RAYLEIGH

• The velocity of propagation of this wave lies in the interval determined by the limits ω→ 0
and ω → ∞. The high frequency limit is approx. 4.7 % higher than the low frequency limit.
The wave is always slower than the S wave. As a function of ω it possesses an inflection point
and it is slightly nonmonotonous.
• This nonmonotonicity appears in the range of small frequencies. The velocity possesses
in this range a minimum whose size is very small. Interestingly, the minimum value remains
constant for the different values of π. This means that the decay is not driven by the diffusion.
Such a behavior is also observed within Biot’s model.
• The attenuation of this wave grows from zero for ω = 0 to infinity as ω→ ∞. In the range
of large frequencies it is linear (a constant positive quality factor). This means that it is a leaky
wave.
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STONELEY

• The velocity of this wave grows monotonically from the zero value for ω = 0 to a finite
limit which is slightly smaller than the velocity of the P2 wave. The growth of the velocity
of this wave in the range of low frequencies is much steeper than the one of Rayleigh waves
similarly to the growth of the P2 velocity.
• Both the velocity and attenuation of the Stoneley wave approach zero as

√
ω.

• The attenuation of the Stoneley wave grows monotonically to a finite limit for ω→∞ (zero
quality factor). It is slightly smaller than the attenuation of P2 waves. Consequently, in contrast
to the claims in the literature, the Stoneley wave is attenuated.

References

1. B. ALBERS, Surface waves in two-component poroelastic media on impermeable bound-
aries — Numerical analysis in the whole frequency domain, WIAS Preprint no. 862,
2003.

2. B. ALBERS, K. WILMANSKI, On surface waves on impermeable boundaries of two-
component poroelastic media, submitted.

3. T. BOURBIE, O. COUSSY, B. ZINSZNER, Acoustics of Porous Media, Editions Technip,
Paris, 1987.

4. H. DERESIEWICZ, R. SKALAK, On uniqueness in dynamic poroelasticity, Bull. Seismol.
Soc. Am., 53 (1963), pp. 783–788.

5. K. WILMANSKI, Waves in porous and granular materials, in: Kinetic and Continuum
Theories of Granular and Porous Media, K. Hutter, K. Wilmanski, eds., vol. 400 of CISM
Courses and Lectures, Springer, Wien, New York, 1999, pp. 131–186.

6. K. WILMANSKI, B. ALBERS, Acoustic waves in porous solid-fluid mixtures, in: Dynamic
Response of Granular and Porous Materials under Large and Catastrophic Deformations,
K. Hutter, N. Kirchner, eds., vol. 11 of Lecture Notes in Applied and Computational
Mechanics, Springer, Berlin, 2003, pp. 285–314.

http://www.wias-berlin.de/publications/preprints/862.html
http://www.wias-berlin.de/publications/preprints/862.html


4.7. RESEARCH GROUP 7 171

Phase transitions

Collaborators: W. Dreyer, F. Duderstadt, S. Qamar, B. Wagner

Cooperation with: W.H. Müller (Technische Universität Berlin), P. Colli, G. Gilardi (Univer-
sità di Pavia, Italy), S. Eichler, G. Jurisch (Freiberger Compound Materials GmbH), T. Hauck
(Motorola, München/Berlin), B. Niethammer (Humboldt-Universität zu Berlin)

Supported by: BMBF: “Mathematische Modellierung und Simulation der Entstehung, des
Wachstums und der Auflösung von Arsenausscheidungen in einkristallinem Galliumarsenid”
(Mathematical modeling and simulation of the formation, growth and dissolution of arsenic
precipitation in single crystal gallium arsenide)

1. Improvement of the existing phase model for morphological changes in solder materials
A careful study of a sharp interface limit of the existing phase field model, that was used in
the past to describe morphological changes in eutectic tin/lead alloys, exhibited that anisotropic
surface energies can only be generated due to mechanical effects. This is one of the
reasons that the diffusion flux was reformulated by W. Dreyer and B. Wagner. The resulting
thermodynamically consistent form now reads

Jk = −Bki

T
∂

∂Xi
(
∂ψ(c,εrs)

∂c
−2A jl (c,εrs)

∂2c
∂Xj∂Xl

− ∂A jl (c,εrs)
∂c

∂c
∂Xj

∂c
∂Xl

−2
∂A jl (c,εrs)

∂εmn

∂c
∂Xj

∂εmn

∂Xl
− ∂2a jl (c,εrs)

∂εmn∂εop

∂εop

∂Xj

∂εmn

∂Xl
− ∂a jl (c,εrs)

∂εmn

∂2εmn

∂Xj∂Xl
). (1)

The variables are the (tin) concentration c and the strain εrs. Bki gives the mobility tensor and
T is the temperature. The functions ψ(c,εrs), A jl (c,εrs), and a jl (c,εrs) are explicitly known,
see [3]. In the sharp interface limit of this model there results a surface tension that can be
calculated from the gradient coefficients A jl (c,εrs).
In the first numerical treatment of the resulting phase field equation, B. Wagner ignored the
mechanical contributions and developed a non-stiff boundary integral formulation to efficiently
simulate the long-time evolution of precipitates during coarsening.

2. Completion of the model for the chemistry and arsenic precipitation in semi-insulating
GaAs The description of semi-insulating GaAs, which includes thermo-mechanical coupling,
diffusion, interface motion, precipitation of arsenic droplets, and the determination of various
thermodynamic equilibria, has been completed. The material parameters have been tested and
make it possible to calculate the phase diagram of GaAs, which is in exact agreement with the
experimental data.
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The Figure shows a region of the phase diagram of GaAs, where the doping substances are
distributed randomly over the three sublattices. Outside this region, precipitation of arsenic
droplets sets in. The upper endpoints of the isobars are triple points, where solid, liquid, and
gas phase are in equilibrium.
For an illustration of the involved field equations in non-equilibrium processes, we give, as an
example, the diffusion equation, which describes the concentration field y(t, r) of the interstitial
arsenic in the vicinity of a spherical arsenic droplet.

∂y
∂t

= D(
∂
∂r

(r2 ∂y
∂r

)+
y(1−y)

RT
180MGb2

ρ̄Sr8 )− D
RT

∂y(1−y)
∂r

36MGb2

ρ̄Sr7 . (2)

Herein, D denotes the diffusion constant, R and T are the gas constant and the temperature,
respectively, M is the molecular weight of the arsenic, G denotes the shear modulus, and ρ̄S is
the mass density of the solid. The quantity b measures the phenomenon that the liquid droplet
needs more space than a solid of the same number of particles, leading to a multiaxial stress
field in the vicinity of the droplet. Note that b depends implicitly on time via the evolving
radius rI (t) of the droplet. More details can be found in [4].

3. Various initial- and boundary problems for interface motions are due to the Grinfeld
instability, which is a phenomenon of growing interest. The Grinfeld instability states that a
plane interface between a solid and its melt may become unstable if multiaxial stress fields
appear in the solid. Surface tension and gravity provoke a stabilization of a plane interface.
We found a further phenomenon in the competition of these effects. It is important whether
the creation/annihilation of the melt decreases or increases the volume that is occupied by the
two-phase mixture. This has the consequence that the stability of a plane interface depends on
further conditions, which are:
(i) Do we consider an infinite system without mass conservation or a finite system with mass
conservation?
(ii) Do we control the total volume or the total pressure of the considered system?
Our study of the Grinfeld instability relies on the solution of a quasistatic elastic problem for
the stresses in the solid and the pressure in the melt. Both are used to calculate the interfacial
normal speed wν, which is given by (see [1])

wν = MI (µL−µS+
1
ρS

σ<i j>νiν j). (3)
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Here MI > 0 denotes the interfacial mobility, µL and µS are chemical potentials of the melt and
the solid, respectively, ρS is the mass density of the solid at the interface, σ<i j> denote the
trace-free components of the stress tensor, and νi are the components of the interfacial normal.
This equation becomes a nonlinear and nonlocal PDE determining the geometry of the interface,
if the liquid pressure and the stress fields of the mechanical boundary value problem have been
inserted. The main results can be found in [2].
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Stability of dewetting polymer films

Collaborator: B. Wagner

Cooperation with: A. Münch (Humboldt-Universität zu Berlin, since Nov. 2003 also Heisen-
berg Fellow at the WIAS), C. Neto, K. Jacobs (Universität des Saarlandes, Saarbrücken), R.
Seemann (Universität Ulm)

Dewetting of thin liquid films has attracted considerable attention due to its importance for
technological applications and because it is a macroscopically observable process that is driven
and influenced by the microscopic physics. Hereby, the focus has shifted from considering
the stationary patterns that result from the dewetting to understanding the dynamical processes
that lead to these states. This has introduced slippage as a relevant influence on the patterns
that evolve ([3], [4], [5]); in particular, the appearance of finger instabilities at dewetting
fronts has been associated with the possibility of even relatively short chain polymer films to
slip on the substrate. Theoretical progress here depends strongly on the ability to develop,
analyze, and solve lubrication-type models for the film dynamics, thereby addressing the
presence of highly separated scales (in space as well as in time) and the fourth order of the
involved partial differential equations. To this end, we have developed numerical methods that
explore the special structure of the models to yield, in combination with spatial adaptivity and
parallelization, efficient codes for the dewetting process, [1].
Using linear stability analysis, we showed that both under no-slip and full-slip boundary
conditions, perturbations of the dewetting front are amplified, but the effect is greater by
orders of magnitude in the full-slip case. Furthermore, the perturbations become much more
asymmetrical under full-slip boundary conditions, while they develop symmetrical bulges under
no-slip conditions, [2]. Additional computations that solve the lubrication model for the full
three-dimensional flow confirm that these findings carry over into the nonlinear regime and are
in good agreement with the experimental findings by C. Neto, K. Jacobs, and R. Seemann.
We are currently using multiple scale asymptotic techniques in order to formulate simpler
problems that are able to resolve the small-scale structure in the vicinity of the apparent contact
line and asymptotically match the inner solution to those solving the large-scale outer problem
describing the shape and dynamics of the rim.
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Kinetic schemes for selected initial and boundary value problems

Collaborators: W. Dreyer, M. Herrmann, S. Qamar

Cooperation with: G. Warnecke, M. Kunik (Otto-von-Guericke-Universität Magdeburg)

Supported by: DFG: Priority Program “Analysis und Numerik von Erhaltungsgleichungen”
(ANumE — Analysis and numerics for conservation laws)

Within the DFG Priority Program “Analysis and numerics of conservation laws” we have
developed and exploited a kinetic approach to solve initial and boundary value problems
for some selected class of hyperbolic conservation laws. In this class there are hyperbolic
conservation laws that have an underlying kinetic equation. In particular we have studied (i) the
nonrelativistic Euler equations for gases, (ii) the hyperbolic system for heat conduction at low
temperatures, (iii) the relativistic Euler equations with a special focus on the ultra-relativistic
case. The kinetic approach relies on the Maximum Entropy Principle (MEP) and its strategy
is as follows: The variables of the hyperbolic system are represented by so-called moment
integrals of a corresponding phase density, which solves the underlying kinetic equation. The
temporal evolution of the variables is decomposed into periods of free flight and update times.
During the periods of free flight, the particles of the kinetic regime evolve according to a
collision-free kinetic equation. At the update times we restart a new free flight period by
maximizing the entropy of the particles.
Within the final period of the DFG Priority Program we have mainly compared the MEP
method with the conventional kinetic flux-splitting schemes. We considered first-order accurate
schemes as well as second-order schemes. Kinetic flux-splitting schemes also rely on the
moment representation of the variables of the hyperbolic system. Here the moment integrals are
decomposed into two parts with particles moving in positive and negative direction, respectively.
The whole space which the particles have at their disposal is decomposed into small cells and
the objective is to calculate all fluxes across the cell boundaries. In 1D the scheme is as follows:
The conservation laws have the form

∂W
∂t

+
d

∑
i=1

∂F i(W)
∂xi = 0 ,

where W is the vector of conserved variables and F i are their corresponding fluxes, along each
direction (d is the number of spatial dimensions).

In the one-dimensional case we decompose the x-axis into cells Ii =
[
xi− 1

2
,xi+ 1

2

]
and study the

following semi-discrete kinetic upwind scheme

dWi

dt
=−

Fi+ 1
2
−Fi− 1

2

∆x
.

Thus a first-order scheme which is fully discrete in space and time is given by

Wn+1
i = Wn

i −λ
Fi+ 1

2
−Fi− 1

2

∆x
,

where λ = ∆t
∆x, Fi+ 1

2
is the fluxes at the cell boundary xi+ 1

2
. Here Wn

i are the piecewise constant
cell average values of the conserved variables at time tn, and ∆x represents the cell width.
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This scheme is only first-order accurate in space. To get high-order accuracy, the initial
reconstruction strategy must be applied to interpolate the cell-averaged variables Wn

i .

For example,

W(tn,x) = Wn
i +Wn,x

i
(x−xi)

∆x
can be constructed to approximate the cell-averaged variables Wn

i at the beginning of each
time step tn, where Wn,x

i is an approximate slope. The extreme points x = 0 and x = ∆x in
local coordinates correspond to the intercell boundaries in general coordinates xi− 1

2
and xi+ 1

2
,

respectively. The values Wi at the extreme points are

Wn,L
i = Wn

i −
1
2
Wn,x

i , Wn,R
i = Wn

i +
1
2
Wn,x

i . (1)

To avoid oscillations in the reconstructed data, the slope Wn,x
i is obtained from the min-mod

limiter as follows

Wx
i = MM

(
θ∆Wi+ 1

2
,
θ
2
(∆Wi− 1

2
+∆Wi+ 1

2
),θ∆Wi− 1

2

)
.

Here, ∆ denotes the central differencing, ∆Wi+ 1
2

= Wi+1−Wi , and MM denotes the min-mod
nonlinear limiter

MM{x1,x2, ...}=





mini{xi} if xi > 0 ∀i ,
maxi{xi} if xi < 0 ∀i ,
0 otherwise .

, (2)

where 1 ≤ θ ≤ 2 is a parameter. Based on the above reconstruction, a high spatial resolution
kinetic solver becomes

dWi

dt
=−

Fi+ 1
2
(WL

i+1,W
R
i )−Fi− 1

2
(WL

i ,WR
i−1)

∆x
, (3)

where Wl , WR are given by (1).
To improve the temporal accuracy, we use a second-order TVD Runge-Kutta scheme to solve
(3). Denoting the right-hand side of (3) as L(W), a second-order TVD Runge-Kutta scheme
updates W through the following two stages:

W(1) = Wn +∆tL(Wn) , (4)

Wn+1 =
1
2

(
Wn +W(1) +∆L(W(1))

)
. (5)

References

1. W. DREYER, M. HERRMANN, S. QAMAR, Kinetic schemes for selected initial and
boundary value problems, WIAS Preprint no. 880, 2003, to appear in: ANumE
Proceedings.

2. W. DREYER, S. QAMAR, Second order accurate explicit finite volume schemes for the
solution of Boltzmann-Peierls equation, to appear in: Z. Angew. Math. Mech.

http://www.wias-berlin.de/publications/preprints/880.html


4.7. RESEARCH GROUP 7 177

3. , Kinetic flux-vector splitting schemes for the hyperbolic heat conduction, to appear
in: J. Comput. Phys.

4. M. KUNIK, S. QAMAR, G. WARNECKE, Kinetic schemes for the ultra-relativistic Euler
equations, J. Comput. Phys., 187 (2003), pp. 572–596.

5. , Kinetic schemes for the relativistic gas dynamics, Preprint no. 02-21, Fakultät für
Mathematik, Universität Magdeburg, 2002, to appear in: Numer. Math.

6. , A BGK-type kinetic flux-vector splitting scheme for the ultra-relativistic Euler
equations, Preprint no. 03-04, Fakultät für Mathematik, Universität Magdeburg, 2003, to
appear in: J. Sci. Comput.



178 4. RESEARCH RESULTS AND APPLIED PROJECTS

4.8 Projects interconnecting research groups

Quasilinear nonsmooth evolution systems in Lp-spaces on three-dimensional domains

Collaborators: J. Elschner (FG 4), J. Rehberg (FG 1), G. Schmidt (FG 4)

Cooperation with: V. Maz’ya (Linköping University, Sweden)

The reported work continues efforts to prove existence, uniqueness, and regularity results for
elliptic and parabolic equations and systems which describe phenomena in physics, chemistry,
and biology (see Annual Research Reports 2000 p. 19 et sqq. and 2002 p. 39 et sqq.). In
particular, we are interested in quasilinear systems of the form

u′k−∇ · (µkJk(u)∇uk) = Rk(u,∇u) , u(T0) = u0 ; u = (u1, . . . ,um) (1)

which comprise—among others—reaction-diffusion systems and heat conduction, see [1] or
[4] and the references cited therein. The focus is on the case of spatially three-dimensional
nonsmooth domains and discontinuous coefficients µk, which occur in modeling heterogeneous
media. Over the past years various tools for the study of such equations have been developed
at the Weierstrass Institute, see [13, 14, 15, 19]. In particular, the result of Gröger [15] is of
great use in many applications, see [2, 4, 7, 11, 18] to name only a few. Gröger’s result states
that

∇ ·µ∇ : H
1,q
Γ (Ω) 7→ (H1,q′

Γ (Ω))′ (2)

is a topological isomorphism for q∈]2,q0[ in case of Lipschitz domains, (elliptic) L∞ coefficient
functions, and mixed boundary conditions. Unfortunately, it is well known that in general
q0 exceeds 2 only slightly. Thus, in view of embedding theorems generically only the case
of two space dimensions is covered. However, for many applications it is not sufficient to
study only equations in two space dimensions, that means physical systems which are—in
one space direction—translational or circular invariant, see, e.g., [2] or [9]. The increasing
structural complexity of technical devices requires to perform simulations and the corresponding
mathematical analysis on three-dimensional domains, see [10, 16].
In our recent paper [22] we study the Dirichlet problem for (1) with piecewise constant
coefficients µk in a polyhedral domain Ω ⊂R3. We give conditions under which the problem
admits a unique solution from a space

C([T0,T],Lp(Ω;Rm))∩C1((T0,T],Lp(Ω;Rm)).

The Dirichlet boundary data may depend on time, and Ω is a Lipschitz polyhedron, that means
Ω is a bounded Lipschitz domain with piecewise plane boundary. Furthermore, we assume that
Ω is the union of a finite number of Lipschitz polyhedra Ω1, . . . , Ωl such that the (3×3) matrix
functions µk are constant on these subdomains. The dependence of the functions Rk on ∇u is
not stronger than quadratic. The main advantage of our approach in comparison to the concept
of weak solutions is the strong differentiability of the solution with respect to time and that the
divergence of the corresponding currents jk = µkJk(t,u)∇uk are functions, not only distributions.
In a strict sense, only this justifies the application of Gauss’ theorem to calculate the normal
components of the currents over boundaries of (suitable) subdomains. Our main result, [22,
Theorem 6.10], ensures the continuity of the normal fluxes across interfaces. This property is
also very important in the numerical analysis of finite volume methods for heterostructures.



4.8. PROJECTS INTERCONNECTING RESEARCH GROUPS 179

The local existence result for (1) rests upon the classical theorem of Sobolevskii on abstract
quasilinear parabolic equations in Banach spaces and estimates for elliptic transmission prob-
lems. The problem is to find an adequate function space with respect to which the hypotheses of
Sobolevskii’s theorem can be verified. In the three-dimensional case one has to ensure that the
linear operators in (2) are topological isomorphisms for some q> 3, if the matrices µ= µk in (1)
are piecewise constant. The operator (2) corresponds to an interface (or transmission) problem
for the Laplacian, with different anisotropic materials given on the polyhedral subdomains Ω1,
. . . , Ωl of Ω, with Dirichlet conditions given on ∂Ω.
In contrast to the pure Laplacian on a Lipschitz domain, see [17, Theorem 0.5], the gradients
of solutions to the transmission problems only belong to L2+ε for some ε > 0. In the vicinity
of vertices and edges, ε may be arbitrarily small, even for polygonal interface problems with
only four isotropic materials meeting in a vertex, see [20]. In the case of complex material
coefficients, which corresponds to some special anisotropy, even two materials can produce
strong singularities near vertices (see [5, 6], where similar problems are studied for Helmholtz
equations). Therefore, a large part of our investigation, [22], is devoted to the optimal
regularity for (2). This result inherently applies to elliptic systems describing heterostructures
on three-dimensional domains.
It is well known that the singularities of solutions to elliptic boundary value problems near
vertices and edges can be characterized in terms of the eigenvalues of certain polynomial
operator pencils on domains of the unit sphere or the unit circle. We refer to [21] for the case
of the Dirichlet and Neumann problem and to [12] for the polyhedral Laplace interface problem
with two isotropic materials. The corresponding analysis for several anisotropic materials has
not been performed so far and is the subject of our investigation in [22].
To avoid the cumbersome analysis of optimal regularity near vertices, see [3], we use the
somewhat surprising fact that if the solution of the interface problem belongs to Lq for some
q > 3 near each interior point of the interface and boundary edges, then the operator (2) is an
isomorphism. Thus, the regularity result for (2) can be reduced to that for an interface problem
on dihedral angles with one common edge. The proof relies essentially on sharp pointwise
estimates of Green’s function, which we perform in [22].
The main result of our linear regularity theory is that the operator (2) is an isomorphism for
some q > 3 provided that a parameter λ̂Ω, which depends on the decomposition of Ω into the
subdomains Ω j , satisfies the inequality

λ̂Ω >
1
3

. (3)

This number is the minimum over all edges of spectral parameters, which can be expressed in
terms of the eigenvalues of certain transmission problems on the unit circle. These problems
are obtained applying the partial Fourier transform along an edge and the Mellin transform
with respect to the radial direction. The regularity result is sufficient for the treatment of the
quadratic gradient terms in (1), if the Banach space is the space Lp with p = q/2. However,
condition (3) imposes a rather strong assumption on the geometry of the subdomains Ω j and
the coefficient µk, or equivalently, on the eigenvalues of certain pencils of ordinary differential
operators. These conditions can be checked for many heterostructures of practical interest.
Though at this point our results are restricted to Dirichlet boundary conditions, it should be
possible to extend the result to mixed boundary conditions, which occur, e.g., in modeling
semiconductor devices ([8]). This problem will be investigated in 2004.
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7. P. FABRIE, T. GALLOUËT, Modeling wells in porous media flow, Math. Models Methods
Appl. Sci., 10 (2000), pp. 673–709.

8. H. GAJEWSKI, Analysis und Numerik von Ladungstransport in Halbleitern (Analysis and
numerics of carrier transport in semiconductors), Mitt. Ges. Angew. Math. Mech., 16
(1993), pp. 35–57.
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Micro-macro transitions in the atomic chain

Collaborators: W. Dreyer (FG 7), M. Herrmann (FG 7), J. Sprekels (FG 1)

Cooperation with: A. Mielke (Universität Stuttgart)

Supported by: DFG: Priority Program “Analysis, Modellbildung und Simulation von Mehr-
skalenproblemen” (Analysis, modelling and simulation of multiscale problems)

During the period of this report, we have studied micro-macro transitions for the (nonlinear)
atomic chain in the context of modulation theory. We have focused on the following problems.

1. We apply the ideas of classic modulation theory to the nonlinear atomic chain.

2. We study the thermodynamic properties of the resulting modulation equations including
an equation of state and a corresponding Gibbs equation.

3. We consider special atomic interaction potentials and derive the corresponding modulation
equations.

In this project we closely collaborate with the group of A. Mielke, University of Stuttgart.

The atomic chain consists of N identical particles, labeled by α = 1..N, which are located at
their positions xα(t). The dynamics of the chain is described by Newton’s equation

ẍα(t) = Φ′
(

xα+1(t)−xα(t)
)
−Φ′

(
xα(t)−xα−1(t)

)
, (1)

where Φ denotes a convex interaction potential. In order to pass to the thermodynamic limit
N→ ∞, we introduce a scaling parameter ε = 1/N and we define the macroscopic time t and
particle index α by

t = εt, α = εα. (2)

In contrast to the macroscopic variables, we interpret t and α as the microscopic time and
particle index, respectively.
The general strategy of modulation theory is as follows:

1. We identify a family of special solutions of (1), which are parametrized by a finite number
of parameters. In the case at hand, the special solutions are traveling waves.

2. We modulate the parameters on the macroscopic scale, so that there result at least
approximate solutions of (1). There exist modulation restrictions in form of macroscopic
PDEs.

A traveling wave for the atomic chain has parameters r , v, k, ω and can be written as

xα(t) = rα+vt+X(kα+ωt), (3)

Here, X(ϕ) is the 1-periodic wave profile, which describes the microscopic oscillations. Since
the wave profile depends on r , v, k, and ω, we write X(r, v, k, ω; ϕ).
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A modulated traveling wave results, if we allow variations of the traveling wave parameters on
the macroscopic scale. More precisely, we set

xα(t) =
1
ε

X(εt, εα)+ X̃(εt, εα;
1
ε

Θ(εt, εα;)), (4)

X̃(εt, εαϕ) = X(r(εt, εα), v(εt, εα), k(εt, εα), ω(εt, εα)), (5)

where

v =
∂X
∂ t

, r =
∂X
∂α

, ω =
∂Θ
∂ t

, and k =
∂Θ
∂α

. (6)

The modulation equations govern the macroscopic evolution of the fields r , v, k, and ω and
ensure that the ansatz (4) provides approximate solutions satisfying (1) up to order O

(
ε2

)
. The

modulation equations read

∂
∂ t




r
v
k
S


+

∂
∂ t




−v
+p
−ω
+g


 = 0. (7)

There is an immediate physical interpretation of all quantities: r – specific length, v – mean
velocity, p – pressure, k – wave number, ω – frequency, S – specific entropy density, g –
entropy flux. Consequently, the four equations in (7) are the macroscopic conservation laws
for mass, momentum, wave number, and entropy. The system is closed by means of a Gibbs
equation

dE = vdv + ωdS− pdr −gdk. (8)

Here, E abbreviates the specific total energy, which is given by an equation of state E =
E(r, v, k, ω). Unfortunately, the equation of state is given only implicitly, and thus a complete
understanding of the modulation equations needs more insight into the structure of traveling
waves. However, there exist some special atomic interaction potentials Φ, for which the
equation of state can be calculated explicitly:

1. the harmonic potential;

2. the case of hard sphere collisions;

3. a model of elastic collision that combines the cases 1 and 2;

4. the limit of small amplitudes.
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5 Scientific-technical Services

5.1 Bibliothek / Library

Die Bibliothek des WIAS ist eine wissenschaft-
liche Spezialbibliothek und sammelt ihr Mate-
rial hauptsächlich auf den Gebieten der Ange-
wandten Analysis und Stochastik. Der Litera-
turbestand der Bibliothek umfasst über 60 000
Bände (Bücher, Preprints und Reports) und un-
gefähr 90 abonnierte Zeitschriften (40 auch als
elektronische Zeitschriften). Den wissenschaft-
lichen Zielen und den aktuellen Projekten des
Instituts wird dabei durch die Berücksichtigung
benachbarter Gebiete der Natur- und Ingenieur-
wissenschaften entsprochen:

The library of WIAS is a specialized scien-
tific library which collects material mainly in
the areas of applied analysis and stochastics.
The stock of the library’s literature, which en-
compasses more than 60,000 volumes (books,
preprints, and reports), and approximately 90
current journals (subscriptions, 40 also as e-
journals), also takes into account neighboring
areas of science and engineering, according to
the scientific objects and actual projects of the
institute:

– Numerische Mathematik und Wissen-
schaftliches Rechnen,

– Mikro-, Nano- and Optoelektronik, Pha-
senübergänge,

– Strömungs- und Transportprobleme,

– Stochastik in Naturwissenschaften und
Finanzmathematik.

– Numerical Mathematics and Scientific
Computing;

– Micro-, Nano- and Optoelectronics,
Phase Transitions;

– Flow and Transport Problems;

– Stochastics in Natural Sciences and Fi-
nancial Mathematics.

Die Bibliothek ist montags bis freitags von 9
Uhr bis 16 Uhr geöffnet. Im Lesesaal steht
den Lesern ein herkömmlicher Zettelkatalog
zur Verfügung, um die benötigte Literatur zu
suchen. Zusätzlich wird ein elektronischer Ka-
talog aufgebaut, der jetzt ungefähr den Bestand
enthält, der in den letzten zehn Jahren erwor-
ben wurde. Zur Vorbereitung der elektroni-
schen Ausleihe und der elektronischen Nutzer-
konten werden die älteren Teile des Bestandes
schrittweise hinzugefügt. Neben den gedruck-
ten Bänden hat man im Lesesaal auch Zugriff
auf zahlreiche elektronische Zeitschriften und
Datenbanken. Das meiste von diesem elektro-
nischen Material können die Mitarbeiter auch
über ihre Workstations lesen.

The opening hours of the library are from Mon-
day through Friday from 9 a.m. to 4 p.m. In
the reading room the readers are provided with
a conventional card catalogue to search for the
literature they need for their purposes. An elec-
tronic catalogue is being built up which covers
now the part of the stock obtained during the
last ten years, approximately. For preparing
electronic lending, including the electonic ad-
ministration of reader accounts, the elder parts
of the stock are added step by step. Apart from
printed volumes of the stock of the library’s
literature, the reading room provides access to
various e-journals and databases. Most of this
electronic material can also be read by the
WIAS collaborators on their workstations.
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Die Bibliothek des WIAS ist Mitglied im
„Arbeitskreis Bibliotheken und Informations-
einrichtungen der Leibniz-Gemeinschaft“ und
in der „Arbeitsgemeinschaft deutscher Spe-
zialbibliotheken“. Die Bibliothek vertritt das
WIAS im „Friedrich-Althoff-Konsortium“, ei-
ner Organisation wissenschaftlicher Bibliothe-
ken in Berlin und Brandenburg.

The WIAS library is a member of the “Ar-
beitskreis Bibliotheken und Informationsein-
richtungen der Leibniz-Gemeinschaft” (work-
ing group of libraries and information institu-
tions of the Leibniz Association) and of the
“Arbeitsgemeinschaft deutscher Spezialbiblio-
theken” (study group of German specialized
libraries). It represents WIAS in the “Friedrich-
Althoff-Konsortium” which is an organization
of scientific libraries in Berlin and Branden-
burg.

Statistische Informationen über das Jahr 2003 / Statistical information about the year
2003

Erwerbungen:
126 Bücher
142 gebundene Zeitschriftenbände
786 Preprints und Reports
51 Loseblattsammlungen

Entleihungen und Verlängerungen aus der
WIAS-Bibliothek:
8663 Bücher

Aus anderen Bibliotheken beschaffte Literatur:
829 Bücher
421 Artikel

Übergabe an das Erwin-Schrödinger-Zentrum
der Humboldt-Universität:
30 Jahrgänge des Journal of Algebra
25 Jahrgänge des Journal of Number Theory

Acquisitions:
126 books
142 bound volumes of journals
786 preprints and reports
51 loose-leaf collections

Lent and renewed from the WIAS library:
8663 books

Literature provided from other libraries:
829 books
421 articles

Transfer to the Erwin Schrödinger Center of
the Humboldt University:
30 annual volumes of Journal of Algebra
25 annual volumes of Journal of Number The-
ory
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5.2 Fachinformation / Science Information

Die Fachinformation des WIAS bietet unter-
schiedliche Recherchemöglichkeiten in biblio-
graphischen Informations-Datenbanken und in
Volltext-Datenbanken für alle Mitarbeiter des
WIAS an:

The Science Information (SI) offers the fol-
lowing facilities for data-recall from differ-
ent bibliographic databases and from full-text
databases

• Die für die Mathematik wich-
tigsten Datenbanken „Zentralblatt
MATH/Database“ und „MathSci“
(Mathematical Reviews),

• Zugangsmöglichkeiten zu natur- und in-
genieurwissenschaftlichen Online-Daten-
banken,

• Neben die bibliographischen Nachweis-
Datenbanken treten zunehmend Volltext-
Datenbanken im WWW, die mitunter (in
ihren Anfangszeiten) noch frei zugäng-
lich, meist aber lizenzpflichtig sind (Bei-
spiel: Zeitschriftenartikel).

Von der Fachinformation wer-
den auf dem WIAS-Server
in der Kollektion „Scientific-
information“ (http://www.wias-
berlin.de/main/services/scientific-
information/index.html.de) u. a. Links
zu den im WWW angebotenen elek-
tronischen Versionen mathematischer
Zeitschriften gesetzt (soweit diese für
das WIAS relevant sind).

• Zusätzlich werden Offline-Recherche-
möglichkeiten (kostenpflichtige CD-
ROM-Datenbanken) an speziellen Re-
cherche-PCs (u. a. in der Bibliothek)
angeboten.

• Access to the mathematical databases
“Zentralblatt MATH/Database” and
“MathSci” (Mathematical Reviews);

• Online data-recall from databases for nat-
ural sciences and engineering;

• Licenced access to full-text databases on
the Web for articles in scientific journals.

The WIAS server provides links to
electronic versions of mathematical
journals relevant for the research
at WIAS (see http://www.wias-
berlin.de/main/services/scientific-
information/index.html.en);

• Offline data-recall from CD-ROM
databases on special PCs (e.g., in the
library).

Die Nutzungsmöglichkeiten sind aufgabenori-
entiert variabel gestaltet, z. B. ist die

The facilities for data retrieval are flexibly
realized, depending on the respective tasks.

• institutsoffene Nutzung von „Zbl.
MATH“ über das WWW und von „Math-
SciNet“ (Math. Rev. on the Web) für al-
le Rechnerplattformen realisiert, so dass
von jedem Arbeitsplatz zugegriffen wer-
den kann. Dagegen erfolgt die

• The access to the data-recall facil-
ity within the databases “Zentralblatt
MATH” and “MathSciNet” is possible
from any workstation in WIAS.

http://www.wias-berlin.de/main/services/scientific-information/index.html.de
http://www.wias-berlin.de/main/services/scientific-information/index.html.de
http://www.wias-berlin.de/main/services/scientific-information/index.html.de
http://www.wias-berlin.de/main/services/scientific-information/index.html.en
http://www.wias-berlin.de/main/services/scientific-information/index.html.en
http://www.wias-berlin.de/main/services/scientific-information/index.html.en
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• Durchführung von Recherchen in den
nichtmathematischen Datenbanken zen-
tral in der Fachinformation. Den Nut-
zungsschwerpunkt bildet die Datenbank
INSPEC des IEE über den Host STN/FIZ
Karlsruhe.

• The data-recall facility within other
databases (e.g., INSPEC) requires a pro-
fessional approach. Therefore, this ser-
vice can be realized only via SI.

Außer dem Datenbank-Retrieval gab es die
folgenden Aktivitäten der Fachinformation:

Further activities of the SI

• Auf dem WIAS-Server werden die im
Institut erstellten Preprints, Reports
und Technical Reports in den der-
zeit üblichen Formaten bereitgestellt:
http://www.wias-berlin.de/publications/.
Ihre Abstracts (bibliographische Be-
schreibung plus Summary) werden
metasprachlich mit dem Dublin Core
indiziert. Damit wird erreicht, dass diese
Web-Dokumente des WIAS weltweit
recherchierbar sind, z. B. mit MPRESS
(Math. Preprint Search System).

• Die Datenbanken von ISI/Thomsson
Scientific Science Citation Index WoS
(Web of Science), Current Contents
Connect und Journal Citation Reports
sind jetzt im WIAS institutsweit nutzbar.

• Das WIAS ist Mitglied des Math-
Net und dort mit einer stan-
dardisierten „Secondary Homepage“
präsent: http://www.wias-berlin.de/math-
net/index.html.de.

• Supply of the WIAS Preprints, Re-
ports, and Technical Reports Series
on the WIAS server http://www.wias-
berlin.de/publications/. The abstracts
of these publications are indexed meta-
linguistically by means of the Dublin
Core. This way, these WIAS web doc-
uments can be retrieved worldwide, e.g.,
by MPRESS (Math. Preprint Search
System).

• ISI/Thomsson Scientific’s data bases Sci-
ence Citation Index WoS (Web of Sci-
ence), Current Contents Connect, and
Journal Citation Reports can now be
used from all workplaces at WIAS.

• WIAS is a member of Math-Net and is
represented there by a standardized “Sec-
ondary Homepage”: http://www.wias-
berlin.de/math-net/index.html.en.

http://www.wias-berlin.de/publications/
http://www.wias-berlin.de/math-net/index.html.de
http://www.wias-berlin.de/math-net/index.html.de
http://www.wias-berlin.de/publications/
http://www.wias-berlin.de/publications/
http://www.wias-berlin.de/math-net/index.html.en
http://www.wias-berlin.de/math-net/index.html.en
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5.3 Rechentechnik / Computer Department

Die Gruppe Rechentechnik besteht aus fünf
Mitarbeitern. Zwei Mitarbeiter sind für die
technische Betreuung der Rechner und de-
ren Verkabelung sowie für die Betreuung der
Windows-Software zuständig. Außerdem be-
treuen sie die Klima- und Belüftungstech-
nik, die Multimediatechnik, die Telefonanla-
ge des Instituts und betreuen und organisieren
die von externen Firmen durchgeführten In-
stallationsarbeiten. Zwei Mitarbeiter kümmern
sich um die Softwarebetreuung der UNIX-
Rechner sowie um das Management des ge-
samten Rechnersystems einschließlich der An-
kopplung des hausinternen Netzes an das Weit-
verkehrsnetz. Ein Mitarbeiter unterstützt An-
wendergruppen bei der Anwendung der instal-
lierten Software (z. B. Bibliotheksrecherche
und mathematische Spezialsoftware) und be-
treut die Internet-Informationsdienste (Hyper-
Wave, WWW, FTP).

The Computer Department consists of five col-
laborators. Two of them are in charge of the
computers and their cabling as well as of the
Windows software support. They also look
after the air-conditioning, the ventilating sys-
tem, the multimedia systems, and the telephone
system of the institute and organize and super-
vise installation work done by external firms.
Two collaborators are in charge of the soft-
ware support for the UNIX computers and of
the management of the entire computer system
including the coupling of the WIAS internal
network to the wide area network. One collab-
orator gives support to groups of users in the
application of the existing software (e.g., data-
recall facilities and specialized mathematical
software). He is also in charge of the inter-
net information services (HyperWave, WWW,
FTP).

Folgende Projekte bestimmten die Entwicklung
der Rechentechnik des WIAS im Jahr 2003:

The following projects have determined the
development of the Computer Department in
the year 2003:

1. Corporate Network

Einige Institute des FVB haben ein ge-
meinsames Datensicherungskonzept ent-
wickelt. Dieses erhöht die Sicherheit der
Datenbestände durch deren Sicherung an
einem entfernten Standort. Dazu wird das
Corporate Network genutzt. Dieses Kon-
zept wurde in den vollen Routinebetrieb
übernommen und hat sich seither voll be-
währt.

1. Corporate Network

Some institutes of Forschungsverbund
Berlin e.V. (FVB) have developed a com-
mon data protection concept. The Cor-
porate Network is used to increase the
security of the stored data by backing
them up at a remote place. The concept
was realized and taken into routine use.
Since then it has proved its worth.

2. LAN

Mit der Erweiterung des LAN wur-
de begonnen. Es wird das Backbone
auf Gigabit-Ethernet umgestellt. Außer-
dem werden die Anschlussmöglichkeiten
für Computer in den Arbeitsräumen we-
sentlich erweitert.

2. LAN

We started to extend the LAN. We
changed the backbone to gigabit ethernet.
The number of connectors for computers
in the offices is essentially increased.
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3. Computeserver

Die Beschaffung des neuen Computeser-
vers HP GS1280 mit acht Prozessoren und
32 GB Hauptspeicher wurde realisiert. Er
wurde in den Routinebetrieb übernommen
und von den Nutzern sehr gut angenom-
men. Dadurch hat sich die Computeserver-
kapazität des WIAS wesentlich erweitert.

4. Fileserver

Der Fileserver wurde durch ein HP DS25-
Cluster sowie ein HP Enterprise Virtual
Array mit einer Kapazität von ca. 2 TByte
ersetzt. Dadurch wurde die Leistungsfä-
higkeit des zentralen Datenspeichers we-
sentlich erweitert.

3. Compute server

The new compute server HP GS1280 with
eight processors and 32 GB main memory
was installed. It operates to the complete
satisfaction of the users. Thereby, the
compute capacity of WIAS was substan-
tially increased.

4. File server

The file server was replaced by a clus-
ter of HP DS25 computers and an HP
Enterprise Virtual Array with a capacity
of about 2 TByte, considerably increasing
the power of the file server.
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6.1 Publications

6.1.1 Monographs

E. BÄNSCH, ed., Challenges in Scientific Computing — CISC 2002, vol. 35 of Lecture Notes
in Computational Science and Engineering, Springer, Berlin [u. a.], 2003.

V. BARBU, I. LASIECKA, D. TIBA, C. VARSAN, eds., Analysis and Optimization of
Differential Systems, IFIP TC7/WG7.2 International Working Conference on Analysis and
Optimization of Differential Systems, September 10–14, 2002, Constanta, Romania, Kluwer
Academic Publishers, Boston, 2003.

Monographs (to appear)

G.N. MILSTEIN, M.V. TRETYAKOV, Stochastic Numerics for Mathematical Physics, Springer,
Berlin/Heidelberg.

6.1.2 Articles in Refereed Journals

B. ALBERS, Relaxation analysis and linear stability vs. adsorption in porous materials, Contin.
Mech. Thermodyn., 15 (2003), pp. 73–95.

U. BANDELOW, R. HÜNLICH, TH. KOPRUCKI, Simulation of static and dynamic properties
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K. WILMANSKI, Macroscopic modeling of porous and granular materials — microstructure,
thermodynamics and some boundary-initial value problems, Preprint no. 858, WIAS, Berlin,
2003.

, On a micro-macro transition for poroelastic Biot’s model and corresponding Gassmann-
type relations, Preprint no. 868, WIAS, Berlin, 2003.

, On Biot-like models and micro-macro transitions for poroelastic materials, Preprint no.
830, WIAS, Berlin, 2003.

, On thermodynamic modeling and the role of the second law of thermodynamics in
geophysics, Preprint no. 813, WIAS, Berlin, 2003.

B. FIEDLER, C. ROCHA, M. WOLFRUM, Heteroclinic orbits between rotating waves of
semilinear parabolic equation on the circle, Preprint no. 832, WIAS, Berlin, 2003.

J. XIONG, A stochastic log-Laplace equation, Preprint no. 859, WIAS, Berlin, 2003.

S. YANCHUK, G. KRISTENSEN, I. SUSHKO, Dynamical approach to complex regional
economic growth based on Keynesian model for China, Preprint no. 807, WIAS, Berlin, 2003.

S. YANCHUK, K.R. SCHNEIDER, L. RECKE, Dynamics of two mutually coupled semi
conductor lasers: Instantaneous coupling limit, Preprint no. 879, WIAS, Berlin, 2003.
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6.2.2 WIAS Reports Series

Reports 20034

U. BANDELOW, A. DEMIRCAN, M. KESTING, Simulation of pulse propagation in nonlinear
optical fibers, Report no. 23, WIAS, Berlin, 2003.

F. DUDERSTADT, Anwendung der von Kármán’schen Plattentheorie und der Hertz’schen Pres-
sung für die Spannungsanalyse zur Biegung von GaAs-Wafern im modifizierten Doppelringtest,
Report no. 24, WIAS, Berlin, 2003.

P. PHILIP, Transient numerical simulation of sublimation growth of SiC bulk single crystals.
Modeling, finite volume method, results, Report no. 22, WIAS, Berlin, 2003.

6.2.3 WIAS Technical Reports Series

Technical Reports 20035

J. SCHEFTER, Discretisation of the Maxwell equations on tetrahedral grids, Technical Report
no. 6, WIAS, Berlin, 2003.

4http://www.wias-berlin.de/publications/reports/index-2003.html
5http://www.wias-berlin.de/publications/technicalreports/index-2003.html

http://www.wias-berlin.de/publications/reports/index-2003.html
http://www.wias-berlin.de/publications/technicalreports/index-2003.html
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6.2.4 Preprints/Reports in other Institutions

J. ELSCHNER, G. SCHMIDT, M. YAMAMOTO, An inverse problem in periodic diffractive
optics: Global uniqueness with a single wave number, Preprint no. 5, University of Tokyo,
Graduate School of Mathematical Sciences, 2003.

A. HUTT, F. ATAY, Spontaneous and evoked activity of synaptically coupled neuronal fields
with axonal propagation delay for gamma-distributed connectivity kernels, Preprint no. 91,
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, 2003.

J. POLZEHL, On a comparison of different simulation extrapolation estimators in errors-in-
variables models, Preprint no. 17, Uppsala University, Department of Mathematics, 2003.

F. LANZARA, V. MAZ’YA, G. SCHMIDT, Numerical solution of the Lippmann-Schwinger
equation by approximate approximations, Preprint no. 1412, The Erwin Schrödinger Interna-
tional Institute for Mathematical Physics, Vienna, 2003.

E. VANDEN BERG, A.W. HEEMINK, H.X. LIN, J.G.M. SCHOENMAKERS, Probability
density estimation in stochastic environmental models using reverse representations, Report no.
03-06, Delft University of Technology, 2003.

, Probability density estimation in stochastic environmental models using reverse represen-
tations, Report no. 6, TU Delft, The Netherlands, Applied Mathematical Analysis, 2003.

E. SHCHEPAKINA, E. SHCHETININA, V. SOBOLEV, Loss of stability scenario in the Ziegler
system, Preprint no. 07, National University of Ireland, University College Cork, Boole Centre
for Research in Informatics, 2003.
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6.3 Membership in Editorial Boards

E. BÄNSCH, Editor, Electronic FBP News (http://fbp.lmc.fc.ul.pt/index.html).

A. BOVIER, Editorial Board, Markov Processes and Related Fields, Polymat, Moscow, Russia.

K. FLEISCHMANN, Editorial Board, Annals of Probability, Institute of Mathematical Statistics,
Beachwood, Ohio, USA.

H. GAJEWSKI, Advisory Board, Mathematische Nachrichten, Wiley-VCH Verlag GmbH, Berlin.

, Editorial Board, Teubner-Texte zur Mathematik, B.G. Teubner Verlagsgesellschaft mbH,
Leipzig.

, Editorial Board, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), Wiley-
VCH Verlag GmbH, Berlin.

R. HENRION, Editorial Board, Journal of Chemometrics, Wiley, New York, USA.

P. MATHÉ, Editorial Board, Monte Carlo Methods and Applications, VSP, Zeist, The Nether-
lands.

J. POLZEHL, Editorial Board, Computational Statistics, Physica Verlag, Heidelberg.

, Editorial Board, Journal of Multivariate Analysis, Elsevier, Amsterdam, The Netherlands.

K.K. SABELFELD, Editor, Monte Carlo Methods and Applications, VSP, Zeist, The Netherlands.

V. SPOKOINY, Editorial Board, Statistics and Decisions, Oldenbourg Wissenschaftsverlag,
München.

, Editorial Board, Journal of Statistical Planning and Inference, Elsevier, Amsterdam, The
Netherlands.

, Editorial Board, Annals of Statistics, IMS, Beachwood, USA.

J. SPREKELS, Editorial Board, Applications of Mathematics, Academy of Science of the Czech
Republic, Prague.

, Editor, Advances in Mathematical Sciences and Applications, Gakkōtosho, Tokyo, Japan.

W. WAGNER, Editorial Board, Monte Carlo Methods and Applications, VSP, Zeist, The
Netherlands.
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6.4 Talks, Posters, and Contributions to Exhibitions

6.4.1 Talks

B. ALBERS, Modeling of flows in porous media with mass exchange. Part II: A modified
Langmuir model of adsorption; stability of flows, Politecnico di Torino, Department of Geo-
Resources and Land, Italy, May 23.

, On the influence of adsorption on linear stability of a flow in porous material, 19th
Canadian Congress of Applied Mechanics, CANCAM03, June 1–6, The University of Calgary,
Department of Mechanical & Manufacturing Engineering, Canada, June 4.

U. BANDELOW, Report on WIAS activities concerning COST Action 288, Kick-off Meeting for
the Cost Action 288, COST TIST Secretariat, Brussels, Belgium, April 7.

, Modeling and simulation of mode-locked lasers, WIAS Minisymposium on Pulse Gener-
ation in Laser Diodes, Berlin, June 12.

, Simulation of mode-locked lasers based on a distributed time-domain model, WIAS
Workshop “Dynamics of Semiconductor Lasers”, September 15–17, Berlin, September 17.

, Simulation of 40 GHz mode-locked multisection DBR lasers, European Semiconductor
Laser Workshop (ESLW’03), September 19–20, Torino, Italy, September 20.

, Thermodynamic designed energy model, 3rd Topical meeting on Numerical Simulation
of Semiconductor Optoelectronic Devices (NUSOD’03), October 14–16, University of Tokyo,
Japan, October 14.

U. BANDELOW, M. RADZIUNAS, Simulation of mode-locked lasers with LDSL-tool, European
Quantum Electronics Conference (EQEC 2003), June 23–27, München, June 26.

E. BÄNSCH, Finite element methods for surface diffusion, Otto-von-Guericke-Universität
Magdeburg, Fakultät für Mathematik, January 14.

, Finite element methods for surface diffusion, Technische Universität Dresden, Institut für
Numerische Mathematik, January 21.

, Finite-Elemente-Verfahren für Phasengrenzphänomene, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Institut für Angewandte Mathematik, February 5.

, Finite element methods for surface diffusion, Forschungszentrum Caesar, Bonn, Febru-
ary 18.

, Finite element methods for surface diffusion, INTERPHASE 2003 Numerical Methods
for Free Boundary Problems, April 14–17, Isaac Newton Institute for Mathematical Sciences,
Cambridge, UK, April 17.

, Finite element methods for curvature driven problems, 15th International Conference on
Domain Decomposition Methods, July 21–25, Freie Universität Berlin, July 24.

, Finite elements and incompressible flows, Korean-German Seminar on Applied Physics
and Mathematics, November 25 – December 2, Academy of Sciences of the DPR of Korea,
Pyongyang, North Korea, November 28.
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, Finite Elemente für die Oberflächendiffusion, Georg-August-Universität Göttingen, Institut
für Numerische und Angewandte Mathematik, December 9.

M. BARO, Coupled Schrödinger drift-diffusion models and applications to RTD, Université
Paul Sabatier, Laboratoire de Mathématiques pour l’Industrie et la Physique, Toulouse, France,
June 20.

M. BIRKNER, A size-biased look at directed polymers, branching populations, and random
environments, The Erwin Schrödinger International Institute for Mathematical Physics (ESI),
Vienna, Austria, December 16.

J. BORCHARDT, Solution of linear systems with sparse matrices and its application within
the process simulator BOP, 5th International Congress on Industrial and Applied Mathematics
(ICIAM 2003), July 7–11, Sydney, Australia, July 8.

A. BOVIER, Activated dynamics in glassy systems, Meeting “Probabilités et Mécanique Statis-
tique”, March 9–20, 3 talks, Centre International de Rencontres Mathématiques (CIRM),
Marseille, France, March 10–14. March 10, 11, and 14.

, Spin glasses, Gaussian processes, and continuous state branching, Abschlusskolloquium
des DFG-Schwerpunktprogramms „Interagierende Stochastische Systeme von hoher Komple-
xität“, April 7–11, Technische Universität Berlin, April 10.

, Mean field spin glasses and Neveu’s branching process, Université Paris VI “Pierre et
Marie Curie”, Laboratoire de Probabilités et Modèles Aléatoires, France, April 22.

, Spin glasses, genealogies of measures, and continuous state branching, Workshop
“Stochastic Processes and Random Media”, July 7–9, Bielefeld, July 8.

, From spin glasses to continuous state branching, XXIX Conference on Stochastic
Processes and their Applications and VII Brasilian School on Probability Theory, August 3–9,
Bernoulli Society for Mathematical Statistics and Probability, Angra dos Reis, Brazil, August 4.

, Metastability for Kawasaki dynamics, Programme “Interaction and Growth in Complex
Stochastic Systems”, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK,
September 11.

, From spin glasses to continuous state branching, Random Media, October 27–31,
Mathematisches Forschungsinstitut Oberwolfach, October 27.

, Metastability and spectral theory, Max-Planck-Institut für Mathematik in den Naturwis-
senschaften, Leipzig, November 21.

, Metastability in Markov processes, Technische Universität Ilmenau, Institut für Mathe-
matik, December 5.

J. CERNY, Aging in Bouchaud’s trap model, Workshop ”Mathematics of Random Spatial
Models from Physics and Biology”, October 13–14, Universität Bielefeld, October 13.

D. DAVIS, Flow and thermal convection in full-zone liquid bridges, 5th EUROMECH Fluid
Mechanics Conference, August 24–28, Conference Centre of Toulouse, France, August 26.
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A. DEMIRCAN, Generation of ultrabroad spectra in optical fibers, WIAS Workshop “Dynamics
of Semiconductor Lasers”, September 15–17, Berlin, September 17.

W. DREYER, Unerwünschte Phasenübergänge in einkristallinem Galliumarsenid, Mathemati-
sches Kolloquium, Universität Stuttgart, Mathematisches Institut A, February 20.

, On the influence of mechanical fields on chemistry, diffusion and interface motion,
International Workshop on Phase Field Models with Stress/Strain Coupling, April 9–10, Access
e. V., Aachen, April 10.

, On the influence of mechanical fields on chemistry, diffusion and interface motion,
Workshop “Partial Differential Equations and Computational Mathematical Sciences”, May 13–
14, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, May 14.

, On mechanics and thermodynamics of phase transitions involving disordered and ordered
solids, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, June 13.

, On the modeling of thermochemical processes in semi-insulating gallium arsenide, 5th
EUROMECH Solid Mechanics Conference (ESMC-5), August 17–22, Thessaloniki, Greece,
August 18.

, On mechanics and thermodynamics of phase transitions involving disordered and ordered
solids, Seminar über Nichtlinearität und Unordnung in komplexen Systemen, Otto-von-Guericke-
Universität Magdeburg, Institut für Theoretische Physik, October 20.

, Modellierung und Simulation thermo-chemischer Prozesse in semiisolierendem Gallium-
arsenid, Kolloquium des Fachbereichs Mechanik, Technische Universität Darmstadt, Novem-
ber 12.

, A study of the Grinfeld instability in liquid-solid interfaces, Oberseminar Analysis und
Anwendungen, Universität Stuttgart, Institut für Analysis und Modellierung, November 14.

J. ELSCHNER, Inverse problems for diffraction gratings: Uniqueness results, Meeting “Inverse
Problems in Wave Scattering and Impedance Tomography”, April 20–25, Mathematisches
Forschungsinstitut Oberwolfach, April 22.

, Inverse problems for periodic diffractive structures, Meeting “Functional Analysis and
Partial Differential Equations”, June 2–3, Han-sur-Lesse, Belgium, June 3.

, On the numerical solution of inverse periodic transmission problems, University of Tokyo,
Department of Mathematical Sciences, Japan, August 5.

V. ESSAOULOVA, Some properties of Adaptive Weights Smoothing, Workshop on Nonlinear
Analysis of Multidimensional Signals, February 25–28, Teistungenburg, February 27.

A. FAGGIONATO, Spectral characterization of aging: Some results, Workshop ”Mathematics
of Random Spatial Models from Physics and Biology”, October 13–14, Universität Bielefeld,
October 13.

K. FLEISCHMANN, Competing species superprocesses with infinite variance, University of
Bath, Department of Mathematical Sciences, UK, February 24.
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, Competing species superprocesses with infinite variance, University of Oxford, Depart-
ment of Statistics, UK, March 3.

, Competing species superprocesses with infinite variance, London Joint Analysis &
Probability Seminar (Imperial College, King’s College London, Queen Mary and Westfield
College, and University College), UK, March 17.

, Compact interface property for symbiotic branching, University of Alberta, Department
of Mathematical and Statistical Sciences, Edmonton, Canada, May 22.

J. FUHRMANN, A detailed numerical model for DMFC: Discretization and solution methods,
BIRS Workshop “Computational Fuel Cell Dynamics II”, April 19–24, Banff International
Research Station, Canada, April 24.

, pdelib — eine Toolbox für die numerische Lösung von PDEs, Annual Conference of
Deutsche Mathematiker-Vereinigung, September 14–19, Universität Rostock, September 17.

, pdelib — a toolbox for the numerical solution of PDEs, Workshop on Parallel Adaptive
Computing, November 9–12, Hohenwart bei Pforzheim, November 12.

H. GAJEWSKI, On parabolic equations with nonlocal drift term, International Conference
“Nonlinear Partial Differential Equations”, September 15–21, National Academy of Sciences of
Ukraine, Institute of Applied Mathematics and Mechanics, Alushta, September 15.

, On the drift-diffusion model of charge transport in semiconductor devices, Conference on
Nonlinear Analysis and Numerics, October 27–29, Rheinische Friedrich-Wilhelms-Universität
Bonn, Sonderforschungsbereich 611, October 29.

K. GÄRTNER, A detailed numerical model describing DMFC: Species transport, reaction
kinetics and temperature feedback, BIRS Workshop “Computational Fuel Cell Dynamics II”,
April 19–24, Banff International Research Station, Canada, April 22.

, “Schwache” finite Volumenformulierung für Delaunay-Simplex-Gitter, mit Anwendungen
auf Bildsegmentierung und Halbleitergleichungen, Gerhard-Mercator-Universität, Institut für
Mathematik, Duisburg, June 26.

B. GENTZ, The effect of noise on coupled oscillators, Mini-Workshop DFG-Schwerpunktpro-
gramm „Interagierende Stochastische Systeme von hoher Komplexität“, February 16–19, Uni-
versität Köln, Mathematisches Institut, February 18.

, Geometric singular perturbation theory for stochastic differential equations, WIAS
Workshop “Multiscale Systems and Applications”, April 3–5, Berlin, April 4.

, Large deviations and Wentzell–Freidlin theory, Colloquium Equations Différentielles
Stochastiques, Université de Toulon et du Var, Physique Mathématique, France, October 20.

, Noise-induced passage through an unstable periodic orbit, Workshop Mathematics and
Physics of Nonlinear Stochastic Systems, November 7–8, Universität Augsburg, Mathematisch-
Naturwissenschaftliche Fakultät, November 7.

, The law of the first-passage time through an unstable periodic orbit, Université Paris VI
“Pierre et Marie Curie”, Laboratoire de Probabilités et Modèles Aléatoires, France, December 16.
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A. GLITZKY, R. HÜNLICH, Stationary solutions of two-dimensional heterogeneous energy
models with multiple species, Nonlocal Elliptic and Parabolic Problems, September 9–11,
Bȩdlewo, Poland, September 10.

J.A. GRIEPENTROG, On a nonlocal phase separation model for multicomponent systems,
Nonlocal Elliptic and Parabolic Problems, September 9–11, Bȩdlewo, Poland, September 11.

G. HEBERMEHL, Eigen mode computation for high dimensional problems of microwave and
laser structures, SIAM Conference on Computational Science and Engineering (CSE03),
February 10–13, San Diego, California, USA, February 11.

R. HENRION, Hölder and Lipschitz stability of solution sets in programs with probabilistic
constraints, Charles University, Institute of Mathematics, Prague, Czech Republic, April 24.

, Quantitative Lösungs-Stabilität in Optimierungsproblemen mit Wahrscheinlichkeitsrestrik-
tionen, Martin-Luther-Universität Halle, Institut für Optimierung und Stochastik, December 4.

R. HENRION, W. RÖMISCH, Hölder and Lipschitz stability of solution sets in programs with
probabilistic constraints, 18th International Symposium on Mathematical Programming (ISMP
2003), August 18–22, Copenhagen, Denmark, August 18.

M. HERRMANN, Micro-macro transitions in the atomic chain, Fourth Colloquium DFG Priority
Program on Analysis, Modeling and Simulation of Multiscale Problems, June 2–4, Andreas
Hermes Akademie, Bonn-Röttgen, June 3.

M. HERRMANN, Atomic chain with temperature, WIAS Workshop “Discrete Atomistic Models
and their Continuum Limits”, December 4–6, Berlin, December 5.

D. HÖMBERG, The surface hardening of steel — Modeling, simulation and optimal control,
SIAM Conference on Computational Science and Engineering (CSE03), February 10–13, San
Diego, California, USA, February 12.

, A thermo-viscoelastic model related to capacitor resistance welding, California State
University, Department of Mathematics, Northridge, USA, February 19.

, Optimal control of surface heat treatments, 2th International Conference on Thermal
Process Modelling and Computer Simulation, March 31 – April 2, Nancy, France, April 1.

, A mathematical model for capacitor resistance welding, 5th International Congress on
Industrial and Applied Mathematics (ICIAM 2003), July 7–11, Sydney, Australia, July 10.

, Optimal design of inductor coils, 5th International Congress on Industrial and Applied
Mathematics (ICIAM 2003), July 7–11, Sydney, Australia, July 10.

, Surface hardening of steel — Part I: Optimal design of inductor coils, 9th IEEE
International Conference on Methods and Models in Automation and Robotics, August 25–28,
Miedzyzdroje, Poland, August 26.

R. HÜNLICH, Simulation von Halbleiterbauelementen mit WIAS-TeSCA, Institutskolloquium,
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Berlin, January 24.
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A. HUTT, Unbiased detection of quasi-stationary coherence in multivariate time series, Work-
shop on Nonlinear Analysis of Multidimensional Signals, February 25–28, Teistungenburg,
February 25.

, Methode zur Detektion von EKP/EKF-Komponenten, 5th MindLab Workshop, April 28–
29, DaimlerChrysler AG, Ulm, April 28.

, Detection of transients in phasic multivariate signals, Universität Potsdam, Institut für
Theoretische Physik, Gruppe Statistical Physics/Theory of Chaos, May 19.

, Analysis of nonlocal neuronal fields including propagation delay effects, Technische
Universität Berlin, Institut für Theoretische Physik, July 17.

, Analysis and modeling of spatio-temporal neurobiological activity, Technische Universität
Berlin, Institut für Neuronale Informationsverarbeitung, September 11.

, Pattern formation in intracortical neural fields, Humboldt-Universität zu Berlin, Institut
für Nichtlineare Dynamik und Stochastische Prozesse, November 18.

, Pattern formation in intracortical neural fields, Universität Münster, Institut für Theo-
retische Physik, November 25.

H.-CHR. KAISER, On space discretization of reaction-diffusion systems with discontinuous
coefficients and mixed boundary conditions, 2nd GAMM Seminar on Microstructures, Jan-
uary 10–11, Ruhr-Universität Bochum, Institut für Mechanik, January 10.

, Classical solutions of van Roosbroeck’s equations with discontinuous coefficients and
mixed boundary conditions on two-dimensional space domains, 19th GAMM Seminar Leipzig
on High-dimensional problems — Numerical treatment and applications, January 23–25, Max-
Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, January 25.

O. KLEIN, Asymptotic behaviour of evolution equations involving outwards pointing hysteresis
operators, 4th International Symposium on Hysteresis and Micromagnetic Modeling (HMM-
2003), May 28–30, Universidad de Salamanca, Departamento de Fı́sica Aplicada, Spain,
May 30.

A. KOLODKO, Stochastic particle methods for Smoluchowski coagulation equation: Variance
reduction and error estimation, IV IMACS Seminar on Monte Carlo Methods (MCM 2003),
September 15–19, Berlin, September 18.

, Upper bounds for Bermudan-style derivatives, IV IMACS Seminar on Monte Carlo
Methods (MCM 2003), September 15–19, Berlin, September 19.

, Estimation of the Bermudan-type option by Monte Carlo method, Russian Academy
of Sciences, Institute of Numerical Mathematics and Mathematical Geophysics, Novosibirsk,
October 30.

D. KOLYUKHIN, Stochastic Eulerian model for the flow simulation in the porous media,
IV IMACS Seminar on Monte Carlo Methods (MCM 2003), September 15–19, Berlin,
September 15.
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TH. KOPRUCKI, Upscaling of microscopically calculated characteristics to macroscopic state
equations, Fourth Colloquium DFG Priority Program on Analysis, Modeling and Simulation of
Multiscale Problems, June 2–4, Andreas Hermes Akademie, Bonn-Röttgen, June 2.

, Upscaling of microscopically calculated characteristics to macroscopic state equa-
tions, Workshop on Multiscale problems in quantum mechanics and averaging techniques,
December 11–12, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig,
December 11.

R. KRAHL, Reorientation of a liquid surface — solving the Navier-Stokes equations in a
time-dependent domain, Tandem Workshop on Geometry, Numerics and Visualization, DFG
Research Center ”Mathematics for Key Technologies“, May 26–28, Gutshof Sauen, May 27.

, An efficient finite element method for free surface flows, 2nd International Berlin
Workshop on Transport Phenomena with Moving Boundaries (IBW2), October 9–10, Techni-
sche Universität Berlin, Fluidsystemtechnik, October 10.

C. KÜLSKE, Analogues of non-Gibbsianness in mean-field models, Catholic University Leuven,
Institute for Theoretical Physics, Belgium, June 2.

, Konzentrationsabschätzungen für Funktionen von abhängigen Zufallsvariablen, Univer-
sität Bielefeld, Fakultät für Mathematik, July 21.

C. KÜLSKE, Gibbs properties of the fuzzy Potts model in mean-field, Workshop on “Gibbs
vs. non-Gibbs” in statistical mechanics and related fields, December 8–10, EURANDOM,
Eindhoven, The Netherlands, December 8.

P. MATHÉ, Zur numerischen Analyse in variablen Hilbertskalen, Universität Kaiserslautern,
Fachbereich Mathematik, June 12.

, Towards numerical analysis in variable Hilbert scales, Hong Kong Baptist University,
Department of Mathematics, September 2.

, Orthogonal array based sampling for financial instruments, Hong Kong Baptist University,
Department of Mathematics, September 4.

, Using orthogonal arrays for high dimensional integration, IV IMACS Seminar on Monte
Carlo Methods (MCM 2003), September 15–19, Berlin, September 15.

, Linear ill-posed problems in variable Hilbert scales: Geometry and regularization,
University of California, Institute for Pure and Applied Mathematics, Los Angeles, USA,
November 3.

, Linear statistically ill-posed problems under general source conditions, Rencontres de
statistiques mathématiques, December 15–19, Luminy, France, December 19.

G.N. MILSTEIN, Estimation of transition density for SDEs by forward-reverse diffusion,
Seminar “Joint Applied Mathematics and Probability and Statistics”, Wayne State University,
Detroit, USA, February 4.

, Numerical analysis of Monte Carlo evaluation of Greeks by finite differences, IV IMACS
Seminar on Monte Carlo Methods (MCM 2003), September 15–19, Berlin, September 19.
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H.J. MUCHA, ClusCorr98 — Adaptive clustering, classification, multivariate visualisation and
validation of results, Annual Meeting of Gesellschaft für Klassifikation (GfKl), March 12–14,
Cottbus, March 12.

, Improvement of cluster analysis by voting, 54th World Congress of the International
Statistical Institute (ISI), August 13–20, Berlin, August 19.

, Zur Stabilität von Ergebnissen hierarchischer Clusteranalysen, Autumn Meeting of
Gesellschaft für Klassifikation, November 14–15, Universität Düsseldorf, November 15.

H. NEIDHARDT, Convexity of trace functionals and applications, Université Paul Sabatier,
Laboratoire de Mathématiques pour l’Industrie et la Physique, Toulouse, France, April 10.

, Coupling of drift-diffusion and dissipative Schrödinger-Poisson systems, Nanolab Spring
School, May 19–23, Université Paul Sabatier, Laboratoire de Mathématiques pour l’Industrie et
la Physique, Toulouse, France, May 20.

, On the quantum transmitting Schrödinger-Poisson system, Workshop “Spectral problems
for Schrödinger-type operators II”, November 11–14, Humboldt-Universität zu Berlin, Institut
für Mathematik, November 14.

, Self-adjoint extensions with several gaps: Scalar-type Weyl functions, 3rd Workshop
Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems, December 12–14,
Technische Universität Berlin, Institut für Mathematik, December 14.

P. PHILIP, Towards optimal control of sublimation growth of SiC bulk single crystals, Conference
on Applied Inverse Problems: Theoretical and Computational Aspects, May 18–23, University
of California, Institute for Pure and Applied Mathematics, Lake Arrowhed, USA, May 20.

J. POLZEHL, Adaptive smoothing procedures for image processing, Workshop on Nonlinear
Analysis of Multidimensional Signals, February 25–28, Teistungenburg, February 25.

, Structural adaptive smoothing methods and applications in imaging, Magnetic Resonance
Seminar, Physikalisch-Technische Bundesanstalt, Berlin, March 13.

, Image processing using Adaptive Weights Smoothing, Uppsala University, Department of
Mathematics, Sweden, May 7.

, Standards needs & VAMAS role in modeling and simulation, VAMAS Steering Committee
and TWA Chairmen Meeting, May 12–14, Petten, The Netherlands, May 13.

, Local likelihood modeling by Adaptive Weights Smoothing, Joint Statistical Meetings,
August 3–7, San Francisco, USA, August 6.

, Local modeling by structural adaptation, The Art of Semiparametrics, October 19–21,
Humboldt-Universität zu Berlin, October 20.

S. QAMAR, Kinetic solution of the Boltzmann-Peierls equation. Part II, International Confer-
ence of Computational Methods in Sciences and Engineering 2003 (ICCMSE 2003), Septem-
ber 12–16, Kastoria, Greece, September 13.
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M. RADZIUNAS, Forced periodic frequency locking: Application of path-following tools, WIAS
Workshop “Dynamical Systems, Synchronization, Lasers”, February 26–27, Berlin, February 27.

, Computation of the stationary states of traveling wave laser model and their analysis,
WIAS Workshop “Multiscale Systems and Applications”, April 3–5, Berlin, April 5.

, Numerical bifurcation analysis of the PDE system describing dynamics in multi-section
semiconductor laser, The European Conference on Numerical Mathematics and Advanced
Applications (ENUMATH 2003), August 18–22, Prague, Czech Republic, August 21.

, Dynamics of longitudinal modes in multisection semiconductor lasers, WIAS Workshop
“Dynamics of Semiconductor Lasers”, September 15–17, Berlin, September 15.

J. REHBERG, Solvability and regularity for parabolic equations with nonsmooth data, Inter-
national Conference “Nonlinear Partial Differential Equations”, September 15–21, National
Academy of Sciences of Ukraine, Institute of Applied Mathematics and Mechanics, Alushta,
September 17.

, Makroskopische und quantenmechanische Modelle für Halbleiter, Workshop “Classical
and Quantum Mechanical Models of Many-Particle Systems”, November 24–29, Mathemati-
sches Forschungsinstitut Oberwolfach, November 28.

, A combined quantum mechanical and macroscopic model for semiconductors, Workshop
on Multiscale problems in quantum mechanics and averaging techniques, December 11–12,
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, December 12.

O. REISS, Mathematical methods for the efficient assessment of market and credit risk,
Universität Kaiserslautern, Fachbereich Mathematik, July 10.

, Mathematical methods for the efficient assessment of market and credit risk, Universität
Kaiserslautern, Fachbereich Mathematik, September 15.

, Fourier inversion algorithms for generalized CreditRisk+ models and an extension
to incorporate market risk, IV IMACS Seminar on Monte Carlo Methods (MCM 2003),
September 15–19, Berlin, September 19.

, Fourier inversion algorithms for generalized CreditRisk+ models and an extension to
incorporate market risk, 10th Annual Meeting of Deutschen Gesellschaft für Finanzwirtschaft,
October 10–11, Mainz, October 11.

, CreditRisk+: Numerische Methoden, Risikobeiträge und Verallgemeinerungen, Mini-
Workshop “Risikomaße und ihre Anwendungen”, Humboldt-Universität zu Berlin, December 1.

K.K. SABELFELD, Grid-free random walks for porous media, Russian Academy of Sciences,
Siberian Branch, Novosibirsk, May 24.

, A Lagrangian stochastic model for the transport in statistically homogeneous porous
media, IV IMACS Seminar on Monte Carlo Methods (MCM 2003), September 15–19, Berlin,
September 15.

, Stochastic Eulerian model for the flow simulation in porous media, IV IMACS Seminar
on Monte Carlo Methods (MCM 2003), September 15–19, Berlin, September 15.
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, Discrete random walk over large spherical grids generated by spherical means for
PDEs, IV IMACS Seminar on Monte Carlo Methods (MCM 2003), September 15–19, Berlin,
September 16.

, Functional random walk on spheres method for the biharmonic equation: Optimization
and error estimation, IV IMACS Seminar on Monte Carlo Methods (MCM 2003), Septem-
ber 15–19, Berlin, September 16.

, Cost analysis of stochastic algorithms for solving Smoluchowski coagulation equation and
a varinace reduction approach, IV IMACS Seminar on Monte Carlo Methods (MCM 2003),
September 15–19, Berlin, September 18.

, Stochastic Lagrangian footprint calculations over surfaces with changing roughness
height, IV IMACS Seminar on Monte Carlo Methods (MCM 2003), September 15–19, Berlin,
September 18.

, Stochastic particle methods for Smoluchowski coagulation equation: Variance reduction
and error estimation, IV IMACS Seminar on Monte Carlo Methods (MCM 2003), Septem-
ber 15–19, Berlin, September 18.

, Stochastic models of flows in anisotropic porous media, International Conference on
Mathematical Methods in Geophysics, October 8–12, Russian Academy of Sciences, Institute
for Computational Mathematics and Mathematical Geophysics, Novosibirsk, October 8.

, Stochastic approach for solving PDEs with random coefficients, Russian Academy of
Sciences, Institute of Computational Analysis and Stochastics, Novosibirsk, November 6.

G. SCHMIDT, Approximate approximations and some of its applications, University of Vienna,
Department of Mathematics, Austria, November 4.

K.R. SCHNEIDER, Complete synchronization of nearly identical systems, WIAS Workshop
“Dynamical Systems, Synchronization, Lasers”, February 26–27, Berlin, February 26.

, Modeling of the longitudinal dynamics of semiconductor lasers, 8th International Con-
ference “Mathematical Modelling and Analysis 2003” (MMA), ECMI, May 28–31, Vilnius,
Lithuania, May 29.

, Slow invariant manifold for a random dynamical system with two time-scales, EQUADIFF
2003, July 21–26, Hasselt, Belgium, July 25.

, Canard solutions of finite and infinite-dimensional dynamical systems, Moscow State
University, Faculty of Physics, Russia, October 1.

, Qualitative theory of dynamical systems (in Russian), 12 talks, Grodno State University,
Faculty of Mathematics, Belarus, November 17 – December 6.

, Immediate and delayed exchange of stabilities, Belarussian State University, Institute for
Mathematics, Minsk, November 18.

, Bifurcation in mode approximation models of semiconductor lasers, Grodno State
University, Faculty of Mathematics, Belarus, December 3.
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J. SCHOENMAKERS, Kreditrisiko Portfolio-Modelle, Kreditanstalt für Wiederaufbau, Frankfurt,
July 18.

, Transition density estimation for stochastic differential equations via forward reverse
representations, IV IMACS Seminar on Monte Carlo Methods (MCM 2003), September 15–19,
Berlin, September 16.

, Monte Carlo methods for pricing and hedging American options, IV IMACS Seminar on
Monte Carlo Methods (MCM 2003), Workshop Financial Models and Simulation, September 15–
19, Berlin, September 19.

, Robust calibration of LIBOR market models, Petit Dejeuner de la Finace, November 4–5,
Paris, November 5.

, Monte Carlo simulation of Bermudan derivatives by dual upper bounds, Graduiertenkolleg
Angewandte Algorithmische Mathematik, Workshop on the Interface of Numerical Analysis,
Optimisation and Applications, November 13–14, Technische Universität München, Novem-
ber 14.

, Monte Carlo simulation of Bermudan derivatives by dual upper bounds, Mini-Workshop
“Risikomaße und ihre Anwendungen”, Humboldt-Universität zu Berlin, December 1.

E. SHCHETININA, Delayed exchange of stability, Workshop on Multi-Scaled Systems and
Hysteresis, January 17–18, University College Cork, Ireland, January 17.

, Different types of loss of stability in the Ziegler system, WIAS Workshop “Multiscale
Systems and Applications”, April 3–5, Berlin, April 4.

, Different types of loss of stability in the Ziegler system, EQUADIFF 2003, July 22–26,
Hasselt, Belgium, July 22.

H. SI, TetGen, a 3d tetrahedral mesh generator based on Delaunay method, Tandem Workshop
on Geometry, Numerics and Visualization, DFG Research Center ”Mathematics for Key
Technologies”, May 26–28, Gutshof Sauen, May 27.

, TetGen, a 3d tetrahedral mesh generator based on Delaunay method, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, Scientific Computing – Numerical Methods, Octo-
ber 28.

V. SPOKOINY, Structural adaptive smoothing procedures and applications in imaging, Kol-
loquium des DFG-SPP 1114 “Mathematische Methoden der Zeitreihenanalyse und digitalen
Bildverarbeitung”, April 29–30, Potsdam, April 29.

, Adaptive estimation of the tail index parameter, Eidgenössische Technische Hochschule
Zürich, Forschungsinstitut für Mathematik, Switzerland, June 12.

, Local likelihood modeling by Adaptive Weights Smoothing, Universität Bern, Institut für
mathematische Statistik und Versicherungslehre, Switzerland, June 13.

, Adaptive modeling for analysis of nonstationary time series, Joint Statistical Meeting,
August 2–9, San Fransicsco, USA, August 5.
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, Wavelet thresholding: Adaptive Weights Approach, Wavelet and Statistics, September 4–7,
Grenoble, France, September 4.

, Pointwise adaptation via local change-point analysis, Rencontres de statistiques mathé-
matiques, December 15–19, Luminy, France, December 15.

J. SPREKELS, Mathematical modelling of hysteresis phenomena, 4 talks, Chiba University,
Department of Mathematics, Japan, February 18–20.

, Modelling and simulation of the sublimation growth of SiC bulk single crystals, INTER-
PHASE 2003 Numerical Methods for Free Boundary Problems, April 14–17, Isaac Newton
Institute for Mathematical Sciences, Cambridge, UK, April 15.

, Modelling of curved mechanical structures, 5th International Congress on Industrial and
Applied Mathematics (ICIAM 2003), July 7–11, Sydney, Australia, July 8.

, Phase field models with hysteresis, 5th International Congress on Industrial and Applied
Mathematics (ICIAM 2003), July 7–11, Sydney, Australia, July 8.

, Analysis of curved structures: Models of rods and shells, Conference on Nonlinear Partial
Differential Equations and Their Applications, November 23–27, Fudan University, Shanghai,
China, November 25.

H. STEPHAN, An inequality for Radon measures and time asymptotics of evolution problems,
International Conference “Nonlinear Partial Differential Equations”, September 15–21, National
Academy of Sciences of Ukraine, Institute of Applied Mathematics and Mechanics, Alushta,
September 17.

, Modellierung und 3D-Simulation von Bauelementen für Schaltkreise der Leistungselek-
tronik, Abschlusskolloquium zum DFG-Schwerpunktprogramm “Halbleiterbauelemente hoher
Leistung”, September 23–24, Aachen, September 24.

A. STURM, A superprocess with infinite mean branching, Mini–Workshop DFG–Schwerpunkt-
programm „Interagierende Stochastische Systeme von hoher Komplexität“, February 16–19,
Universität Köln, Mathematisches Institut, February 17.

, A coalescent incorporating mutation and selection, Mathematical Population Genetics
and Statistical Physics, February 19–21, The Erwin Schrödinger International Institute for
Mathematical Physics (ESI), Vienna, Austria, February 20.

G. TELSCHOW, First experiences on GS1280, Fall Meeting of the HP Consortium for Advanced
Scientific and Technical Computing Users Group, September 21–24, Dallas, USA, September 22.

D. TIBA, Optimal design of mechanical structures, Conference on Control Theory of Partial
Differential Equations, May 30 – June 1, Georgetown University, Department of Mathematics,
Washington DC, USA, May 31.

D. TIBA, J. SPREKELS, Optimization of curved mechanical structures, 5th International
Congress on Industrial and Applied Mathematics (ICIAM 2003), July 7–11, Sydney, Australia,
July 8.



6.4. TALKS, POSTERS, AND CONTRIBUTIONS TO EXHIBITIONS 225

D. TURAEV, Two modes dynamics of semiconductor laser, WIAS Workshop “Multiscale
Systems and Applications”, April 3–5, Berlin, April 5.

, To the question on the genericity of the Newhouse phenomenon, EQUADIFF 2003,
July 22–26, Hasselt, Belgium, July 24.

V. VAKTHEL, Wahrscheinlichkeiten großer Abweichungen für Galton-Watson-Prozesse, Berliner
Graduiertenkolleg “Stochastische Prozesse und probabilistische Analysis”, Technische Univer-
sität Berlin, July 21.

A. VLADIMIROV, Moving discrete solitons in multicore fibers and waveguide arrays, Confer-
ence dedicated to the 60th birthday of Prof. Paul Mandel, April 11–12, Université Libre de
Bruxelles, Optique Nonlinéaire Théorique, Belgium, April 11.

, Moving discrete solitons in multicore fibers and waveguide arrays, European Quantum
Electronics Conference, June 22–27, München, June 25.

, A new DDE model for passive mode-locking, WIAS Workshop “Dynamics of Semicon-
ductor Lasers”, September 15–17, Berlin, September 17.

, Passive mode-locking in semiconductor lasers, Institute for Laser Physics, St. Petersburg,
Russia, December 25.

R. VODÁK, Existence and asymptotic behaviour of solutions to compressible Navier-Stokes
equations for isothermal fluids with a nonlinear stress tensor, Mathematical Theory in Fluid
Mechanics, Eight Paseky School, June 8–14, Charles University, Mathematical Institute and
Department of Mathematical Analysis, Prague, Czech Republic, June 10.

B.A. WAGNER, Sharp-interface model for eutectic alloys, Access, International Workshop on
Phase Field Models with Stress-Strain Coupling, April 9–10, Aachen, April 10.

, Destabilisation of dewetting fronts in the presence of slip, BIRS Workshop “Nonlinear
Dynamics of Thin Films and Fluid Interfaces”, November 29 – December 4, Pacific Institute
for the Mathematical Sciences, Banff, Canada, December 4.

W. WAGNER, DSMC and the Boltzmann equation, Workshop “Direct Simulation Monte Carlo:
The Past 40 Years and the Future”, June 2–5, Politecnico di Milano, Italy, June 2.

, A quasi-Monte Carlo simulation of cluster coagulation, IV IMACS Seminar on Monte
Carlo Methods (MCM 2003), September 15–19, Berlin, September 18.

, Gelation in stochastic models, Workshop “Stochastic Methods in Coagulation and
Fragmentation”, December 8–12, Isaac Newton Institute for Mathematical Sciences, Cambridge,
UK, December 10.

W. WEISS, Surface hardening of steel — Part II: PID control of laser surface hardening,
9th IEEE International Conference on Methods and Models in Automation and Robotics,
August 25–28, Miedzyzdroje, Poland, August 26.

K. WILMANSKI, On the thermodynamics of poroelastic media, Seminar of the Seismics/Seismol-
ogy Working Group, Freie Universität Berlin, Institut für Geologische Wissenschaften, Jan-
uary 13.
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, Micro-macro transitions in two-component models of porous materials, Universität
Dortmund, Lehrstuhl für Mechanik, April 11.

, Bulk and surface waves in saturated poroelastic materials — low frequency approximation,
European School for Advanced Studies in Reduction of Seismic Risks, ROSE School, Collegio
Alessandro Volta, Pavia, Italy, May 19.

, Micro-macro transitions in two-component models of porous materials — Gassmann
relations, Politecnico di Milano, Structural Engineering Department, Italy, May 21.

, Modeling of flows in porous media with mass exchange. Part I: Governing equations and
thermodynamics, Politecnico di Torino, Department of Geo-Resources and Land, Italy, May 23.

, Macroscopic modeling of porous and granular materials — Microstructure, thermo-
dynamics and some boundary-initial value problems, 19th Canadian Congress of Applied
Mechanics (CANCAM03), June 1–6, The University of Calgary, Department of Mechanical &
Manufacturing Engineering, Canada, June 3.

, Schallwellen in Böden und zerstörungsfreie Prüfverfahren in der Bodenmechanik: Modi-
fiziertes Biot-Modell für poroelastische Körper und Parameterbestimmung, Technische Univer-
sität Berlin, Institut für Bauingenieurwesen, July 10.

, Schallwellen in Böden und zerstörungsfreie Prüfverfahren in der Bodenmechanik: Schall-
und Oberflächenwellen in gesättigten porösen Körpern, Technische Universität Berlin, Institut
für Bauingenieurwesen, July 17.

M. WOLFRUM, Heteroclinic connections between rotating waves of scalar parabolic equations
on the circle, EQUADIFF 2003, July 22–26, Hasselt, Belgium, July 23.

, Instabilities of semiconductor lasers with delayed optical feedback, Workshop “Delay
Equations and Applications”, September 8–11, Bristol, UK, September 10.

, Attractors of semilinear parabolic equations on the circle, Meeting “Dynamics of
Structured Systems”, December 14–20, Mathematisches Forschungszentrum Oberwolfach, De-
cember 16.

S. YANCHUK, Forced periodic frequency locking: Poincaré mapping approach, WIAS Work-
shop “Dynamical Systems, Synchronization, Lasers”, February 26–27, Berlin, February 27.

, Synchronization of coupled autonomous systems, National Academy of Sciences of
Ukraine, Institute of Mathematics, Kiev, April 21.

, Synchronization of two coupled Lang-Kobayashi systems, National Institute of Applied
Optics, Florence, Italy, May 7.

, Synchronization problem in two-section semiconductor lasers, Research Seminar “Ange-
wandte Analysis”, Humboldt-Universität zu Berlin, Institut für Mathematik, July 7.

, Complete synchronization of symmetrically coupled autonomous systems, EQUADIFF
2003, July 22–26, Hasselt, Belgium, July 25.
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, Synchronization phenomena in semiconductor laser, Sfb 555 Workshop “Complex
Nonlinear Processes”, September 11–13, Berlin, September 12.

, Synchronization of two mutually coupled semiconductor lasers: Instantaneous coupling
limit, WIAS Workshop “Dynamics of Semiconductor Lasers”, September 15–17, Berlin,
September 16.

6.4.2 Posters

M. BARO, H. GAJEWSKI, R. HÜNLICH, H.-CHR. KAISER, Optoelektronische Bauelemente:
mikroskopische & makroskopische Modelle, MathInside — überall ist Mathematik, event of the
DFG Research Center “Mathematics for Key Technologies” on the occasion of the Open Day
of Urania, Berlin, September 13.

J. BORCHARDT, F. GRUND, D. HORN, Block-Orientierter Prozesssimulator BOP, ACHEMA
2003, Frankfurt am Main, May 19–24.

G. BRUCKNER, J. ELSCHNER, A. RATHSFELD, G. SCHMIDT, Simulation, optimization and
reconstruction of diffractive structures, Conference “Diffractive Optics 2003”, Oxford, UK,
September 17–20.

W. DREYER, M. HERRMANN, M. KUNIK, S. QAMAR, G. WARNECKE, Kinetic schemes for
the ultra-relativistic Euler equations, Final Colloquium of the DFG Priority Program “Analysis
und Numerik von Erhaltungsgleichungen”, Magdeburg, September 3–5.

W. DREYER, M. HERRMANN, M. KUNIK, S. QAMAR, Kinetic solutions of kinetic equations
& hyperbolic systems, Final Colloquium of the DFG Priority Program “Analysis und Numerik
von Erhaltungsgleichungen”, Magdeburg, September 3–5.

J. FUHRMANN, Numerische Simulation von Direkt-Methanol-Brennstoffzellen, H2Expo, Ham-
burg, October 9–11.

, pdelib — Werkzeug für Numerische Simulationen, H2Expo, Hamburg, October 9–11.

A. HUTT, J. POLZEHL, Spatial adaptive signal detection in fMRT, Human Brain Mapping
Conference, New York, USA, June 17–22.

C. MEYER, O. KLEIN, P. PHILIP, A. RÖSCH, J. SPREKELS, F. TRÖLTZSCH, Optimal-
steuerung bei der Herstellung von SiC-Einkristallen, MathInside—überall ist Mathematik, event
of the DFG Research Center “Mathematics for Key Technologies” on the occasion of the Open
Day of Urania, Berlin, September 13.

S. BAUER, O. BROX, M. BILETZKE, J. KREISSL, M. RADZIUNAS, B. SARTORIUS, H.-
J. WÜNSCHE, Speed potential of active feedback lasers, CLEO/Europe-EQEC 2003, München,
July 22–27.

M. LICHTNER, M. RADZIUNAS, L. RECKE, J. REHBERG, K.R. SCHNEIDER, D8 –
Nichtlineare dynamische Effekte in integrierten optoelektronischen Strukturen, MathInside—
überall ist Mathematik, event of the DFG Research Center “Mathematics for Key Technologies”
on the occasion of the Open Day of Urania, Berlin, September 13.
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6.4.3 Contributions to Exhibitions

U. BANDELOW, Darstellung des WIAS, World of Photonics (LASER 2003), München, June 23–
27.

J. BORCHARDT, F. GRUND, D. HORN, Block-Orientierter Prozesssimulator BOP, ACHEMA
2003, Frankfurt am Main, May 19–24.

J. FUHRMANN, Numerische Simulation von Direkt-Methanol-Brennstoffzellen, H2Expo, Ham-
burg, October 9–11.
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6.5 Visits to other Institutions6

E. BÄNSCH, Forschungszentrum Caesar, Bonn, February 18–21.

M. BARO, Université Paul Sabatier, Laboratoire de Mathématiques pour l’Industrie et la
Physique, Toulouse, France, February 1 – July 31.

M. BIRKNER, The Erwin Schrödinger International Institute for Mathematical Physics (ESI),
Vienna, Austria, December 10–18.

A. BOVIER, The Erwin Schrödinger International Institute for Mathematical Physics (ESI),
Vienna, Austria, December 22, 2002 – January 25, 2003.

, Centre International de Rencontres Mathématiques (CIRM), Marseille, France, March 9–
20.

, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, July 22 – Septem-
ber 19, Programme “Interaction and Growth in Complex Stochastic Systems”.

J. CERNÝ, Ecole Polytechnique Fédérale de Lausanne, Département de Mathématiques, Switzer-
land, July 14–18.

J. ELSCHNER, University of Tokyo, Department of Mathematical Sciences, Japan, July 28 –
August 8, in the framework of the DFG project “Scientific cooperation with Japan: Inverse
problems in electromagnetics and optics”.

K. FLEISCHMANN, University of Bath, Department of Mathematical Sciences, UK, Febru-
ary 20–24.

, University of Oxford, Mathematical Institute, UK, February 23 – March 15.

, Imperial College London, Department of Mathematics, UK, March 15–18.

, University of Alberta, Department of Mathematical and Statistical Sciences, Edmonton,
Canada, May 6–29.

B. GENTZ, CNRS-Centre de Physique Théorique, Marseille, and Université de Toulon et du
Var, Physique Mathématique, France, October 18–24.

, CNRS-Centre de Physique Théorique, Marseille, and Université de Toulon et du Var,
Physique Mathématique, France, November 28 – December 15.

R. HENRION, Universität Halle-Wittenberg, Institut für Optimierung und Stochastik, visiting
professorship (C4), winter semester 2003/2004.

, Institute of Information Theory and Automation, UTIA, Prague, Czech Republic, April 21–
27.

A. HUTT, Leibniz-Institut für Neurobiologie, Magdeburg, July 21–25.

A. KOLODKO, Russian Academy of Sciences, Novosibirsk, October 18 – November 22.

6Only stays of more than three days are listed.
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P. MATHÉ, Hong Kong Baptist University, Department of Mathematics, Hong Kong, Au-
gust 15 – September 10.

, University of California, Institute for Pure and Applied Mathematics, Los Angeles, USA,
October 11 – November 21.

G.N. MILSTEIN, Wayne State University, Department of Mathematics, Detroit, USA, Jan-
uary 30 – February 17.

, Ural State University, Department of Mathematics, Ekaterinburg, Russia, September 21 –
October 21.

H. NEIDHARDT, Université Paul Sabatier, Laboratoire de Mathématiques pour l’Industrie et la
Physique, Toulouse, France, April 7–13.

J. POLZEHL, Uppsala University, Department of Mathematics, Sweden, April 29 – May 9.

K.K. SABELFELD, Russian Academy of Sciences, Institute of Computational Mathematics and
Mathematical Geophysics, Novosibirsk, April 24 – June 6.

, Bonndata GmbH, Bonn, August 6–10.

, Russian Academy of Sciences, Institute of Computational Mathematics and Mathematical
Geophysics, Novosibirsk, October 5 – November 16.

, Turkmen State University, Physics and Mathematics Research Center, Ashkhabad,
November 17 – December 28.

G. SCHMIDT, University of Vienna, Department of Mathematics, and The Erwin Schrödinger
Institute for Mathematical Physics, Vienna, Austria, November 3–8.

K.R. SCHNEIDER, Moscow State University, Faculty of Physics, Russia, September 23 –
October 3.

, Grodno State University, Faculty of Mathematics, Belarus, November 17 – December 5.

E. SHCHETININA, University College Cork, Department of Physics, Ireland, January 15 –
February 11.

V. SPOKOINY, Institut d’Informatique et Mathématiques Appliquées de Grenoble (IMAG),
France, August 31 – September 7.

J. SPREKELS, Chiba University, Department of Mathematics, Japan, February 16–23.

D. TIBA, University of Jyväskylä, Department of Mathematical Information Technology, Fin-
land, February 26 – March 26.

, University of Jyväskylä, Department of Mathematical Information Technology, Finland,
November 18–28.

D. TURAEV, Weizmann Institute of Science, Department of Mathematics, Rehovot, Israel,
August 22–30.
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A.G. VLADIMIROV, Université Libre de Bruxelles, Optique Nonlinéaire Théorique, Belgium,
March 20 – April 16.

W. WAGNER, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, Septem-
ber 23 – December 18, Programme “Interaction and Growth in Complex Stochastic Systems”.

S. YANCHUK, National Institute of Applied Optics, Florence, Italy, April 28 – May 9.

, National Institute of Applied Optics, Florence, Italy, November 17–28.



232 6. PUBLICATIONS, SCIENTIFIC LIFE

6.6 Academic Teaching1

E. BÄNSCH, Numerik II (lecture), Freie Universität Berlin, 4 SWS, winter semester 2002/2003.

, Numerik II (exercises), Freie Universität Berlin, 2 SWS, winter semester 2002/2003.

, Theorie und Numerik elliptischer und parabolischer Probleme (Numerik III) (lecture),
Freie Universität Berlin, 4 SWS, summer semester 2003.

, Theorie und Numerik elliptischer und parabolischer Probleme (Numerik III) (exercises),
Freie Universität Berlin, 2 SWS, summer semester 2003.

, Adaptive Finite-Elemente-Verfahren (seminar), Freie Universität Berlin, 2 SWS, winter
semester 2003/2004.

, Numerik für partielle Differentialgleichungen (seminar), Freie Universität Berlin, 2 SWS,
winter semester 2003/2004.

E. BÄNSCH, H. GAJEWSKI, J. SPREKELS, F. TRÖLTZSCH, R. KLEIN, C. SCHÜTTE,
P. DEUFLHARD, R. KORNHUBER, AND OTHERS, Numerische Mathematik/Scientific Comput-
ing (senior seminar), Freie Universität Berlin, 2 SWS, winter semester 2002/2003.

, Numerische Mathematik/Scientific Computing (senior seminar), Freie Universität Berlin,
2 SWS, summer semester 2003.

, Numerische Mathematik/Scientific Computing (senior seminar), Freie Universität Berlin,
2 SWS, winter semester 2003/2004.

E. BÄNSCH, A. MÜNCH, B. WAGNER, Dünne Filme: Modellierung, Analysis, Asymptotik
und Numerik (seminar), Technische Universität Berlin, 2 SWS, summer semester 2003.

A. BOVIER, Markov Prozesse und Metastabilität (lecture), Technische Universität Berlin, 2
SWS, summer semester 2003.

, Mathematische Physik I (lecture), Technische Universität Berlin, 4 SWS, winter semester
2003/2004.

A. BOVIER, B. GENTZ, H. FÖLLMER, P. IMKELLER, U. KÜCHLER, J.-D. DEUSCHEL,
J. GÄRTNER, M. SCHEUTZOW, Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar),
Technische Universität Berlin, 2 SWS, winter semester 2002/2003.

, Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar), Humboldt-Universität zu
Berlin, 2 SWS, summer semester 2003.

, Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar), Humboldt-Universität zu
Berlin, 2 SWS, winter semester 2003/2004.

W. DREYER, Analytische Methoden der Kontinuumsmechanik und Materialtheorie (lecture),
Technische Universität Berlin, 4 SWS, winter semester 2002/2003.

1SWS = semester periods per week
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, Analytische Methoden der Kontinuumsmechanik und Materialtheorie (exercises), Techni-
sche Universität Berlin, 2 SWS, winter semester 2002/2003.

, Analytische Methoden der Kontinuumsmechanik und Materialtheorie (lecture), Technische
Universität Berlin, 4 SWS, summer semester 2003.

W. DREYER, W.H. MÜLLER, Grundlagen der Kontinuumsmechanik (lecture), Technische
Universität Berlin, 4 SWS, winter semester 2003/2004.

D. FERUS, J. FUHRMANN, J. RAMBAU, M. STEINBACH, Analysis I für Ingenieure (lecture),
Technische Universität Berlin, 4 SWS, winter semester 2003/2004.

H. GAJEWSKI, Analysis und Numerik von Drift-Diffusionsgleichungen (lecture), Freie Univer-
sität Berlin, 2 SWS, winter semester 2002/2003.

, Analysis und Numerik von Drift-Diffusionsgleichungen (lecture), Freie Universität Berlin,
2 SWS, summer semester 2003.

B. GENTZ, Random perturbations of dynamical systems (lecture), Universität Leipzig and
Max-Planck-Institut für Mathematik in den Naturwissenschaften, 2 SWS, summer semester
2003.

A. GLITZKY, Aspekte bei der Modellierung und mathematischen Behandlung von Reaktions-
Diffusionsproblemen (lecture), Humboldt-Universität zu Berlin, 2 SWS, winter semester
2002/2003.

A. GLITZKY, Optimale Steuerung bei parabolischen Differentialgleichungen (lecture), Humboldt-
Universität zu Berlin, 2 SWS, winter semester 2003/2004.

J.A. GRIEPENTROG, Nichtglatte elliptische Randwertprobleme (lecture), Humboldt-Universität
zu Berlin, 2 SWS, winter semester 2002/2003.

R. HENRION, Optimierungsprobleme mit Wahrscheinlichkeitsrestriktionen (lecture), Humboldt-
Universität zu Berlin, 2 SWS, summer semester 2003.

, Lösungsstabilität in stochastischen Optimierungsproblemen (lecture), Martin-Luther-
Universität Halle-Wittenberg, 2 SWS, winter semester 2003/2004.

, Optimierungsprobleme mit Zufallsparametern (lecture), Martin-Luther-Universität Halle-
Wittenberg, 4 SWS, winter semester 2003/2004.

, Risikotheorie (lecture), Martin-Luther-Universität Halle-Wittenberg, 2 SWS, winter
semester 2003/2004.

R. HENRION, W. RÖMISCH, M. STEINBACH, Numerik stochastischer Modelle (seminar),
Humboldt-Universität zu Berlin, 2 SWS, winter semester 2002/2003.

, Numerik stochastischer Modelle (seminar), Humboldt-Universität zu Berlin, 2 SWS,
summer semester 2003.

D. HÖMBERG, Lineare Algebra für Ingenieure (lecture), Technische Universität Berlin, 2 SWS,
summer semester 2003.
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, Nichtlineare Optimierung (lecture), Technische Universität Berlin, 4 SWS, winter semester
2003/2004.

A. HUTT, Physik II (exercises), Humboldt-Universität zu Berlin, 8 SWS, winter semester
2003/2004.

O. KLEIN, Nichtlineare partielle Differentialgleichungen (lecture), Humboldt-Universität zu
Berlin, 2 SWS, winter semester 2002/2003.

, Mathematik für Chemiker I (lecture), Humboldt-Universität zu Berlin, 2 SWS, winter
semester 2003/2004.

O. KLEIN, J. SPREKELS, Partielle Differentialgleichungen (seminar), Humboldt-Universität
zu Berlin, 2 SWS, summer semester 2003.

C. KÜLSKE, Stochastik von Mean-Field-Modellen (lecture), Technische Universität Berlin, 2
SWS, winter semester 2002/2003.

C. KÜLSKE, Zufallsgraphen (lecture), Technische Universität Berlin, 2 SWS, winter semester
2003/2004.

H.-J. MUCHA, Statistische Datenanalyse in der Archäologie (exercises), Humboldt-Universität
zu Berlin, 1 SWS, summer semester 2003.

K.R. SCHNEIDER, B. FIEDLER, Nichtlineare Dynamik (senior seminar), WIAS, Freie Univer-
sität Berlin, 2 SWS, winter semester 2002/2003.

, Nichtlineare Dynamik (senior seminar), WIAS, Freie Universität Berlin, 2 SWS, summer
semester 2003.

, Nichtlineare Dynamik (senior seminar), WIAS, Freie Universität Berlin, 2 SWS, winter
semester 2003/2004.

K.R. SCHNEIDER, L. RECKE, H.J. WÜNSCHE, Mathematische Modelle der Photonik
(seminar), WIAS, Humboldt-Universität zu Berlin, 2 SWS, winter semester 2002/2003.

, Mathematische Modelle der Photonik (seminar), WIAS, Humboldt-Universität zu Berlin,
2 SWS, summer semester 2003.

, Mathematische Modelle der Photonik (seminar), WIAS, Humboldt-Universität zu Berlin,
2 SWS, winter semester 2003/2004.

V. SPOKOINY, Nichtparametrische Verfahren und ihre Anwendungen (lecture), Humboldt-
Universität zu Berlin, 2 SWS, winter semester 2002/2003.

, Nichtparametrische stochastische Verfahren und ihre Anwendungen (seminar), Humboldt-
Universität zu Berlin, 2 SWS, winter semester 2003/2004.

V. SPOKOINY, W. HÄRDLE, Mathematische Statistik (research seminar), Humboldt-Universität
zu Berlin, 2 SWS, summer semester 2003.

, Mathematische Statistik (research seminar), Humboldt-Universität zu Berlin, 2 SWS,
winter semester 2003/2004.
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V. SPOKOINY, H. LÄUTER, W. HÄRDLE, Mathematische Statistik (research seminar),
Humboldt-Universität zu Berlin, 2 SWS, winter semester 2002/2003.

J. SPREKELS, Inkorrekt gestellte Probleme (lecture), Humboldt-Universität zu Berlin, 2 SWS,
winter semester 2003/2004.

H. STEPHAN, Anfänge der Analysis und euklidische Geometrie (lecture), Humboldt-Universität
zu Berlin, 2 SWS, winter semester 2002/2003.

, Anfänge der Analysis und euklidische Geometrie (lecture), Humboldt-Universität zu
Berlin, 2 SWS, summer semester 2003.

, Arithmetische und rekursive Folgen (lecture), Humboldt-Universität zu Berlin, 2 SWS,
winter semester 2003/2004.

G. TELSCHOW, Einführung in die Datenverarbeitung I (lecture), Technische Fachhochschule
Berlin, 6 SWS, winter semester 2002/2003.

, Einführung in die Datenverarbeitung II (lecture), Technische Fachhochschule Berlin, 6
SWS, summer semester 2003.

B.A. WAGNER, Lie theory of differential equations (lecture), Technische Universität Berlin, 2
SWS, summer semester 2003.

W. WEISS, Mathematische Hilfsmittel zur Thermo- und Fluiddynamik (lecture), Technische
Universität Berlin, 2 SWS, winter semester 2002/2003.

, Mathematische Hilfsmittel zur Thermo- und Fluiddynamik (exercises), Technische Uni-
versität Berlin, 2 SWS, winter semester 2002/2003.

K. WILMANSKI, Dynamik von mehrkomponentigen Körpern (lecture), Technische Universität
Berlin, 2 SWS, winter semester 2002/2003.

, Nichtlineare Elastizitätstheorie (lecture), Technische Universität Berlin, 2 SWS, summer
semester 2003.

, Dynamik von mehrkomponentigen Körpern (lecture), Technische Universität Berlin, 2
SWS, winter semester 2003/2004.

K. WILMANSKI, I. MÜLLER, Thermodynamisches Seminar (seminar), WIAS/Technische
Universität Berlin, 2 SWS, winter semester 2002/2003.

, Thermodynamisches Seminar (seminar), WIAS/Technische Universität Berlin, 2 SWS,
summer semester 2003.
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6.7 Calls, Awards and Distinctions, Habilitations, Ph.D. Theses, and Under-
graduate-degree Supervision

Calls

E. BÄNSCH, C4 professorship, May 12, Universität Konstanz, Fachbereich Mathematik und
Statistik.

A. BOVIER, C4 professorship, April 5, Technische Universität Berlin.

D. HÖMBERG, C4 professorship, April 15, Technische Universität Berlin.

D. TURAEV, C3 professorship, October 1, Ben-Gurion University of the Negev, Department of
Mathematics.

Awards and Distinctions

J. POLZEHL, Chairman Technical Working Area 18, Versailles Project on Advanced Materials
and Standards (VAMAS).

K.R. SCHNEIDER, Badge of Honour “For merit in developing of sciences and economy of
Russia”, Russian Academy of Natural Sciences, Samara, Russia, November 27, 2002, awarded
in 2003.

J. SPREKELS, member of the International Scientific Board of the Institute of Mathematics
“Simion Stoilow” of the Romanian Academy, Bucharest.

K. WILMANSKI, Secretary and Treasurer of the International Society for the Interaction of
Mechanics and Mathematics (ISIMM).

Habilitations

B. GENTZ, Fluctuations in the Hopfield model at the critical temperature and Stochastic
slow-fast systems, Technische Universität Berlin, March 5.

Ph.D. Theses

F. DUDERSTADT, Anwendung der von Kármán’schen Plattentheorie und der Hertz’schen Pres-
sung für die Spannungsanalyse zur Biegung von GaAs-Wafern im modifizierten Doppelringtest,
Technische Universität Berlin, supervisor: Priv.-Doz. Dr. W. Dreyer, November 27.

P. PHILIP, Transient numerical simulation of sublimation growth of SiC bulk single crys-
tals. Modeling, finite volume method, results, Humboldt-Universität zu Berlin, supervisor:
Prof. Dr. J. Sprekels, February 3.

S. QAMAR, Kinetic schemes for the relativistic hydrodynamics, Otto-von-Guericke-Universität
Magdeburg, supervisor: Prof. Dr. G. Warnecke, September 26.

O. REISS, Mathematical methods for the efficient assessment of market and credit risk,
Universität Kaiserslautern, supervisor: Dr. J.G.M. Schoenmakers, September 15.
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Undergraduate-degree Supervision

R. SEEDORF, Regelungsalgorithmen für die Laserhärtung von Stahl, Technische Fachhochschule
Berlin, Fachbereich II: Mathematik — Physik — Chemie, supervisor: W. Weiss, December 19.
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6.8 WIAS Conferences, Colloquiums, and Workshops

WORKSHOP “DYNAMICAL SYSTEMS, SYNCHRONIZATION, LASERS”
Berlin, February 26–27
Organized by: WIAS (FG 2)

The international workshop was devoted to the following problems: Synchronization of nearly
identical systems (K.R. Schneider, S. Yanchuk), forced frequency locking (M. Radziunas,
L. Recke, S. Yanchuk), periodic, quasiperiodic, and chaotic regimes in lasers (S. Gonchenko,
D. Rachinskii, L. Shilnikov, D. Turaev). About 20 participants from five countries attended the
workshop. Seven talks were given.

WORKSHOP “MULTISCALE SYSTEMS AND APPLICATIONS”
Berlin, April 3–5
Organized by: WIAS (FG 2), Freie Universität Berlin
Sponsored by: WIAS, DFG Research Center “Mathematics for Key Technologies” (FZT 86)

The workshop has been attended by 43 participants, among them 16 from abroad. Twenty-six
lectures have been delivered.
During the workshop, recent trends and new results for the study of multiscale systems have
been presented and discussed.
The main foci of the workshop were: phase transitions, spikes, multiscale dynamics, including
delayed exchange of stability (canard solutions), control of slow-fast systems.
From the viewpoint of applications, the emphasis was on the multiscale dynamics of semicon-
ductor lasers, of oscillating systems in biology, and of liquid film, but also models for tin-lead
alloys and for micro-macro transitions have been presented.
The mathematical approaches presented in the talks to treat multiscale systems ranged from
asymptotic upper and lower solutions, methods of asymptotic expansions via invariant manifolds
(basing on spectral gap conditions) to the method of desingularization in case of non-
hyperbolicity in singularly perturbed systems.
In the frame of control theory of systems with different time scales, problems of robust control
for uncertain systems and for systems with delay as well as optimal control problems have been
considered.
Two different approaches to look for invariant manifolds in stochastic systems formed a special
highlight of the workshop.

WORKSHOP “DYNAMICS OF SEMICONDUCTOR LASERS”
Berlin, September 15–17
Organized by: WIAS (FG 2), DFG Research Center “Mathematics for Key Technologies”
(FZT 86), Ferdinand-Braun-Institut für Höchstfrequenztechnik Berlin, Fraunhofer-Institut für
Nachrichtechnik Heinrich-Hertz-Institut Berlin, Humboldt-Universität zu Berlin
Sponsored by: WIAS, DFG (SFB 555, FZT 86)

During this workshop, new results have been presented from the fields of modeling, numerical
simulation, and analysis of semiconductor devices, together with their applications in optical
telecommunications.
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Based on the financial support of the DFG Research Center “Mathematics for Key Technolo-
gies” (FZT 86) and the DFG Collaborative Research Center “SFB 555: Complex Nonlinear
Processes”, it was possible to invite leading experts from Europe and the USA, which made
this workshop an event of high scientific significance.
Thematically, the workshop was focused on nonlinear dynamical effects in semiconductor
devices. Following the tradition of preceeding workshops in 1999 and 2001, major attention
was paid to an interdisciplinary approach, including the mathematical and physical background
as well as technological applications, in particular optical telecommunication technologies. In
the focus of interest were the subjects

• delayed coupling and feedback in lasers;

• mode-locked lasers and saturable absorbers;

• ultrafast effects in SOAs.

From a mathematical point of view, these topics are related to bifurcation theory and path-
following techniques, in particular for delay differential equations, singular perturbations,
synchronization, and waves in nonlinear, inhomogeneous media. Fifty-one participants attended
the workshop. Twenty-six talks were given.

IVTH IMACS SEMINAR ON MONTE CARLO METHODS

Berlin, September 15–19
Organized by: WIAS (FG 6), Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Sponsored by: DFG, ZIB, WIAS

The research group “Stochastic Algorithms and Nonparametric Statistics” has organized (chair-
man: K.K. Sabelfeld) the IVth IMACS Seminar on Monte Carlo Methods. This Seminar is the
world’s largest international forum on stochastic simulation. In the IVth IMACS Seminar, 155
participants from more than 25 countries have made reports in 16 sessions on different basic
research topics on stochastic simulation and applications in semiconductor structures, porous
media, interacting particle systems, complex biological structures like ion channels, computer
graphics, contaminant transport, finance models, and simulations, etc.
The selected papers will be published in a special issue of the journal Monte Carlo Methods
and Applications.

WORKSHOP “DISCRETE ATOMISTIC MODELS AND THEIR CONTINUUM LIMITS”
Berlin, December 4–6
Organized by: WIAS (FG 7), DFG Priority Program, Universität Stuttgart
Sponsored by: DFG, WIAS

Within the DFG Priority Program “Analysis, modelling and simulation of multiscale problems”,
W. Dreyer (FG 7), A. Mielke (Stuttgart), and J. Sprekels (FG 1) organized the workshop
“Discrete atomistic models and their continuum limits”. The central focus of the workshop
was on multiscale problems of the atomic chain and various continuum limits of microscopic
many-particle systems. However, there were also lectures and discussions on related topics as
phase transitions, the Casimir effect, and the Boltzmann-Peierls equation.
All in all, 41 participants assembled to hear 19 talks.
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6.9 Visiting Scientists2

6.9.1 Guests

M. ANTHONISSEN, Eindhoven University of Technology, Department of Mathematics and
Computer Science, The Netherlands, November 9 – December 3.

V. ARNĂUTU, University “Al. I. Cuza”, Department of Mathematics, Iaşi, Romania, Octo-
ber 15 – November 14.

, November 15 – December 14.

E. BAUER, Technische Universität Graz, Institut für Allgemeine Mechanik, Austria, June 6–20.

D. BELOMESTNY, Universität Bonn, Institut für Angewandte Mathematik, September 25–30.

N. BERGLUND, CNRS-Centre de Physique Théorique, Marseille, and Université de Toulon et
du Var, Physique Mathématique, France, January 20–24.

, July 14 – August 15.

, October 25 – November 2.

M. BIRKNER, Johann Wolfgang Goethe-Universität, Institut für Stochastik und Mathematische
Informatik, Frankfurt am Main, May 8 – June 6.

J.C.R. BLOCH, DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (FZT 86),
Berlin, January 1 – October 30.

, December 12–31.

M. BROKATE, Technische Universität München, Zentrum Mathematik, August 18–22.

C. BUTUCEA, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités et
Modèles Aléatoires, France, January 27 – February 17.

V.F. BUTUZOV, Moscow State University, Faculty of Physics, Russia, April 1–30.

J. CERNÝ, Ecole Polytechnique Fédérale de Lausanne, Département de Mathématiques, Switzer-
land, February 3–28.

M.-Y. CHENG, National Taiwan University, Department of Mathematics, Taipei, August 22–30.

R. DAHLHAUS, Universität Heidelberg, Institut für Angewandte Mathematik, January 21–24.

A. DALALYAN, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités et
Modèles Aléatoires, France, July 1–31.

D.A. DAWSON, Carleton University Ottawa, School of Mathematics and Statistics, Canada,
August 12–20.

M. DELFOUR, Université de Montréal, Centre de Recherches Mathématiques, Canada, Au-
gust 19–24.

2Only stays of more than three days are listed.
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M. DELGADO, Universidad Carlos III de Madrid, Departamento de Economı́a, Spain, Jan-
uary 27–30.

M.A. EFENDIEV, Universität Stuttgart, Mathematisches Institut A, March 24–29.

, July 28 – August 8.

M. ERMAKOV, Russian Academy of Sciences, Mechanical Engineering Problem Institute, St.
Petersburg, November 1–30.

S.M. ERMAKOV, University of St. Petersburg, Faculty of Mathematics and Mechanics, Russia,
August 23 – September 21.

R. EYMARD, Université de Marne-la-Vallée, Département de Mathématiques, Champs-sur-
Marne, France, May 17–30.

, October 25–29.

T. FATTLER, Universität Kaiserslautern, Institut für Mathematik, September 22 – October 5.

V. GAYRARD, Ecole Polytechnique Fédérale de Lausanne, Département de Mathématiques,
Switzerland, June 1–30.

A. GOLDENSHLUGER, University of Haifa, Department of Statistics, Israel, January 19 –
February 2.

, September 7–16.

S. GONCHENKO, Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, Russia,
February 6 – March 6.

I. GRAMA, Université de Bretagne Sud, Laboratoire SABRES, Vannes, France, April 1 –
May 31.

P. GWIAZDA, University of Warsaw, Institute for Applied Mathematics, Poland, January 20 –
February 16.

M. HAGEMANN, Universität Basel, Institut für Informatik, Switzerland, August 4–29.

O. HRYNIV, University of Cambridge, Statistical Laboratory, Centre for Mathematical Sciences,
UK, February 23 – March 1.

, December 14–23.

Y. INGSTER, St. Petersburg State Transport University, Department of Applied Mathematics,
Russia, July 1 – August 31.

A. JOURANI, Université de Bourgogne, Département de Mathématiques, Dijon, France, June 1–
14.

A. JUDITSKY, Université Joseph Fourier Grenoble I, Laboratoire de Modélisation et Calcul,
France, April 16–30.

M. KAMENSKI, Université de Rouen, Département de Mathématiques, France, June 22–28.
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J. KAMPEN, Universität Heidelberg, Institut für Angewandte Mathematik, September 18–25.

S. KASHENKO, Yaroslavl State University, Department of Mathematics, Russia, April 2–11.

S. KAVIANPOUR, University of Calgary, Department of Mechanical and Manufacturing Engi-
neering, Canada, November 22 – December 8.

J. KEFI, Université Paul Sabatier, Laboratoire de Mathématiques pour l’Industrie et la Physique,
Toulouse, France, November 29 – December 10.

A. KHLUDNEV, Russian Academy of Sciences, Lavrentyev Institute of Hydrodynamics, Novosi-
birsk, Russia, November 25 – December 24.

E.Y. KHRUSLOV, National Academy of Sciences of Ukraine, B. Verkin Institute for Low
Temperature Physics and Engineering, Kharkov, May 22 – June 21.

A. KLENKE, Friedrich-Alexander-Universität Erlangen-Nürnberg, Mathematisches Institut,
March 31 – April 6.

P. KNOBLOCH, Charles University, Institute of Numerical Mathematics, Prague, Czech Repub-
lic, September 10–30.

D. KOUROUNIS, University of Ioannina, Department of Material Science, Greece, August 5–15.

A. KRASNOSELSKIJ, Russian Academy of Sciences, Institute for Information Transmission
Problems, Moscow, November 24 – December 21.

P. KREJČÍ, Academy of Sciences of the Czech Republic, Institute of Mathematics, Prague,
October 13 – November 9.

O. KURBANMURADOV, Turkmen State University, Physics and Mathematics Research Center,
Ashkhabat, September 2 – November 2.

S. LANGDON, Brunel University, Department of Mathematical Sciences, Uxbridge, UK,
April 28 – May 16.

C. LECOT, Université de Savoie, Laboratoire de Mathématiques (LAMA), Le Bourget-du-Lac,
France, September 13–20.

Z. LI, Beijing Normal University, Department of Mathematics, China, November 15 –
December 13.

A. LINKE, DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (FZT 86), Berlin,
August 1 – December 31.

V.G. MAZ’YA, Linköping University, Department of Mathematics, Sweden, September 20–27.

P. MORIN, Universidad Nacional del Litoral, Departamento de Matemática, Santa Fe, Argentina,
December 2–23.

P. MÖRTERS, University of Bath, Department of Mathematical Sciences, UK, January 8–22.

, December 14–20.
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L. MYTNIK, Technion Israel Institute of Technology, Faculty of Industrial Engineering and
Management, Haifa, Israel, June 30 – August 10.

N.N. NEFEDOV, Moscow State University, Faculty of Physics, Russia, April 1–30.

J. OUTRATA, Academy of Sciences of the Czech Republic, Institute of Information Theory and
Automation, Prague, November 2 – December 1.

S. PECERICENKO, Russian Academy of Sciences, Institute for Applied Mathematics and
Mathematical Geophysics, Novosibirsk, September 1–30.

S.V. PEREVERZEV, National Academy of Sciences of Ukraine, Institute of Mathematics, Kiev,
February 4–8.

S.V. PEREVERZEV, Johann Radon Institute for Computational and Applied Mathematics, Linz,
Austria, November 23 – December 7.

W. POLONIK, University of California, Department of Statistics, Davis, USA, May 10–17.

J.-H. PYO, Purdue University, Department of Mathematics, West Lafayette, Indiana, USA,
May 15 – June 9.

A. QUARTERONI, Ecole Polytechnique Fédérale de Lausanne, Institute of Mathematics and
Bernoulli Institute, Switzerland, September 22 – October 3.

D. RACHINSKII, Technische Universität München, Fakultät für Mathematik, February 24 –
March 8.

S. RJASANOW, Universität des Saarlandes, Fachrichtung Mathematik, March 27 – April 17.

Y. ROGOVCHENKO, Eastern Mediterranean University, Department of Mathematics, Famagusta,
Northern Cyprus, August 17–24.

A. SAMOILENKO, National Academy of Science of Ukraine, Institute of Mathematics, Kiev,
May 17–24.

O. SCHENK, Universität Basel, Fachbereich Informatik, Switzerland, November 10–13.

I. SHALIMOVA, Russian Academy of Sciences, Institute for Applied Mathematics and Mathe-
matical Geophysics, Novosibirsk, January 25 – February 25.

, June 21 – July 21.

, August 23 – September 23.

E. SHCHEPAKINA, Samara State University, Department of Differential Equations & Control
Theory, Russia, November 1–30.

Z. SHI, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités et Modèles
Aléatoires, France, July 11–18.

J. SIEBER, University of Bristol, Department of Engineering Mathematics, UK, September 13 –
October 4.
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I.V. SKRYPNIK, National Academy of Sciences of Ukraine, Institute of Applied Mathematics
and Mechanics, Donetsk, July 1–31.

V. SOBOLEV, Samara State University, Department of Differential Equations & Control Theory,
Russia, November 1–30.

S. SPERLICH, Universidad Carlos III de Madrid, Departamento de Estadı́stica y Econometrı́a,
Spain, January 17–24.

A. STEFANSKI, Technical University of Lodz, Division of Dynamics, Poland, October 26 –
November 8.

J. SWART, Universität Erlangen-Nürnberg, Mathematisches Institut, June 16–27.

M. TRETJAKOV, University of Leicester, Department of Mathematics and Computer Science,
UK, April 2 – May 1.

, August 13–29.

A. TSYBAKOV, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités et
Modèles Aléatoires, France, July 8–11.

D. TURAEV, Ben-Gurion University of the Negev, Department of Mathematics, Beer-Sheva,
Israel, October 5–22.

A.B. VASILIEVA, Moscow State University, Faculty of Physics, Russia, October 11–31.

V.A. VATUTIN, Steklov Institute of Mathematics, Moscow, Russia, October 20 – November 20.

C. VIAL, Université de Rennes 1, Institut de Recherche Mathématiques de Rennes, France,
September 21 – October 3.

P. VOGT, University of Bath, Department of Mathematical Sciences, UK, April 7–17.

S. WIECZOREK, Sandia National Laboratories, Semiconductor Device Sciences, Albuquerque,
USA, September 9–20.

J.-J. XU, McGill University of Montreal, Department of Mathematics and Statistics, Canada,
July 20 – August 20.

A.G. YAGOLA, Moscow State University, Department of Mathematics, Russia, September 7–11.

M. YAMAMOTO, University of Tokyo, Department of Mathematical Sciences, Japan, June 2–9.

, September 6–30.

M. ZAHRADNÍK, Charles University, Faculty of Mathematics and Physics, Prague, Czech
Republic, November 17–30.

H. ZORSKI, Polish Academy of Sciences, Institute of Fundamental Research, Warsaw, Novem-
ber 1–30.

S. ZWANZIG, Uppsala University, Department of Mathematics, Sweden, January 6–14.
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6.9.2 Scholarship Holders

I. EDELMAN, Russian Academy of Sciences, Institute of Physics of the Earth, Moscow,
Humboldt Research Fellowship, January 1 – August 31, 2003.

L. SHILNIKOV, Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, Russia,
Humboldt Research Award, February 20 – March 27, 2003.

M. THIEULLEN, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités
et Modèles Aléatoires, France, Humboldt Research Fellowship, September 1, 2002 – Febru-
ary 28, 2003.

V. VOLKOVA, Dnepropetrovsk State Technical University of the Railway Transport, Ukraine,
EU INTAS Young NIS Scientist Fellowship Programme, May 1 – June 30, 2003.

J. XIONG, University of Tennessee, Department of Mathematics, Knoxville, USA, Humboldt
Research Fellowship, July 1, 2003 – June 31, 2004.

6.9.3 Doctoral Candidates and Post-docs supervised by WIAS Collaborators

M. AN DER HEIDEN, Technische Universität Berlin, Graduate College “Stochastic Processes
and Probabilistic Analysis”, doctoral candidate, May 1, 2002 – April 30, 2004.

A. KLIMOVSKI, Technische Universität Berlin, Graduate College “Stochastic Processes and
Probabilistic Analysis”, doctoral candidate, June 1, 2003 – December 31, 2004.
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6.10 Guest Talks

L. ADAMEK, MTU Aero Engines Friedrichshafen, Brennstoffzellenaktivitäten der MTU
Friedrichshafen, April 7.

M. ANTHONISSEN, Eindhoven University of Technology, Department of Mathematics and
Computer Science, The Netherlands, Adaptive grid refinement using local defect correction
applied to combustion, November 27.

D. ARMBRUSTER, Arizona State University, USA, Dynamics and control of supply chains,
April 29.

M. BAAKE, Universität Greifswald, Institut für Mathematik und Informatik, Dynamics of
recombination, April 30.

G. BÄRWOLFF, Technische Universität Berlin, Institut für Mathematik, Optimization of a
thermal coupled fluid flow problem — algorithms and numerical results, October 30.

E. BAUER, Technische Universität Graz, Institut für Allgemeine Mechanik, Austria, Model-
lierung der Druck- und Dichteabhängigkeit granularer Medien im Rahmen der Hypoplastizität,
June 11.

S. BAUER, Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, Berlin, Synchro-
nisation processes in lasers: Resonances on tori by optical feedback, May 22.

J. BEHRNDT, Technische Universität Berlin, Institut für Mathematik, Eine Klasse von Rand-
wertproblemen, in denen die Randbedingungen vom Eigenwertparameter abhängen, October 15.

D. BELOMESTNY, Universität Bonn, Institut für Angewandte Mathematik, Constrained kernel
deconvolution, June 4.

N. BERGLUND, CNRS-Centre de Physique Théorique, Marseille, and Université de Toulon et
du Var, Physique Mathématique, France, On the noise-induced passage through an unstable
periodic orbit, October 29.

M. BIRKNER, Johann Wolfgang Goethe-Universität, Institut für Stochastik und Mathematische
Informatik, Frankfurt/Main, Longtime behaviour of spatial branching processes with local
interaction, May 14.

O. BROX, Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, Berlin, Controlled
manipulation of laser dynamics by integrated feedback systems, June 12.

M.V. BURNASHEV, Russian Academy of Sciences, Institute for Information Transmission
Problems, Moscow, On some singularities in parameter estimation problems, March 26.

C. BUTUCEA, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités et
Modèles Aléatoires, France, Minimax estimation in the semiparametric convolution model,
February 5.

C. CARSTENSEN, Vienna University of Technology, Institute for Applied Mathematics and
Numerical Analysis, Austria, Adaptive finite elements for relaxed methods (FERM) in compu-
tational microstructures, September 2.
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K. CHELMINSKI, Technische Universität Darmstadt, Fachbereich Mathematik, Thermoplastizität
mit linearer kinematischer Verfestigung. Mathematische Analyse eines Modells, April 9.

I. CHUECHOV, National University Kharkov, Ukraine, Random monotone systems, March 25.

R. DAHLHAUS, Universität Heidelberg, Institut für Angewandte Mathematik, Graphical models
for multivariate time series, January 22.

K. DECKELNICK, Otto-von-Guericke-Universität Magdeburg, Institut für Analysis und Nu-
merik, An existence and uniqueness result for a phase-field model of diffusion-induced grain
boundary motion, July 10.

M. DELFOUR, Université de Montréal, Centre de Recherches Mathématiques, Canada, Mod-
elling of thin and asymptotic shells, August 20.

M. DELGADO, Universidad Carlos III de Madrid, Departamento de Economı́a, Spain,
Distribution-free goodness-of-fit tests for time series models, January 29.

M. DREYER, Universität Bremen, Zentrum für Angewandte Raumfahrttechnologie und Mikro-
gravitation, Reorientierung freier Flüssigkeitsoberflächen bei Änderung der Beschleunigung,
April 28.

M.A. EFENDIEV, Universität Stuttgart, Mathematisches Institut A, On the structure of invertible
pseudo-differential operators and its applications, March 25.

TH. ELSÄSSER, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin,
Nichtlineare Dynamik optischer Anregungen und Impulspropagation auf ultrakurzen Zeitskalen,
March 10.

H. EMMERICH, Universität Dortmund, Fachbereich Chemietechnik, Phasenfeldsimulationen
von Morphologien an verspannten epitaktischen Oberflächen, February 6.

R. EYMARD, Université de Marne-la-Vallée, Département de Mathématiques, Champs-sur-
Marne, France, Some features of the convergence study of finite volume methods: I. Conver-
gence/error estimate of finite volume methods for elliptic problems, May 20.

, Some features of the convergence study of finite volume methods: II. Nonlinear
parabolic/hyperbolic problems; the role of uniqueness theorems, May 22.

, Some features of the convergence study of finite volume methods: III. Two coupled
problems (two-phase flow in porous media, diffusion-reaction), May 23.

, Some features of the convergence study of finite volume methods: IV. Finite volume
methods for incompressible Navier-Stokes equations, May 27.

A. FEDOTOV, St. Petersburg State University, Faculty of Mathematics, Russia, Renormalization
method for almost periodic equation, December 11.

S. FOREST, Ecole des Mines de Paris, Centre des Matériaux, France, Notion of representative
volume element for heterogeneous materials: Statistical and numerical approach, July 2.

C. FRANZ, Universität Karlsruhe (TH), Institut für Werkstoffkunde I, Simulation der Wärme-
behandlung von Stahlbauteilen, April 30.
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M. GEORGI, N. JANGLE, Freie Universität Berlin, Institut für Mathematik, Spiral waves in
reaction-diffusion systems, July 15.

I. GRAMA, Université de Bretagne Sud, Laboratoire SABRES, Vannes, France, Estimation of
the tail of a distribution by local exponential modeling, April 16.

K. GRÖGER, Berlin, Evolutionsgleichungen mit Konvektionsterm, February 12.

P. GWIAZDA, University of Warsaw, Institute for Applied Mathematics, Poland, Weak entropy
solutions for balance laws with multifunction source term, January 24.

, Existence via compactness for the Leray-Lions operators with discontinuous coefficients,
February 5.

K. HACK, GTT-Technologies, Herzogenrath, Rechnergestützte Thermochemie — Eine Toolbox
und ihre praktischen Anwendungen, July 7.

S. HANDROCK-MEYER, Technische Universität Chemnitz, Fakultät für Mathematik, Inverse
Probleme für die Grad-Schafranov-Gleichung, December 18.

L. HOFFMANN, Universität Kaiserslautern, Fachbereich Physik, Application of field theoretical
methods to phase transitions, April 23.

O. HRYNIV, University of Cambridge, Statistical Laboratory, Centre for Mathematical Sciences,
UK, The opinion game: A microscopic stochastic model for share price evolution, December 17.

B. HÜTTL, Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, Berlin, Ampli-
tude fluctuations in mode-locked lasers, November 27.

V. JOHN, Otto-von-Guericke-Universität Magdeburg, Institut für Analysis und Numerik, Eddy
Simulation turbulenter inkompressibler Strömungen, July 10.

A. JOURANI, Université de Bourgogne, Département de Mathématiques, Dijon, France, Hamil-
tonian necessary conditions for the generalized Bolza problem, June 12.

A. JUDITSKY, Université Joseph Fourier Grenoble I, Laboratoire de Modélisation et Calcul,
France, Primal-dual stochastic approximation algorithms, April 23.

M. JURISCH, Freiberger Compound Materials GmbH, Thermochemische Aspekte der GaAs-
Einkristallsynthese, May 26.

M. KAMENSKI, Université de Rouen, Département de Mathématiques, France, Averaging
method via topological degree theory, June 24.

J. KEFI, Université Paul Sabatier, Laboratoire de Mathématiques pour l’Industrie et la Physique,
Toulouse, France, Mathematical analysis of the two-band Schrödinger model, December 3.

A. KHLUDNEV, Russian Academy of Sciences, Lavrentyev Institute of Hydrodynamics, Novosi-
birsk, Crack problems for solids with nonlinear boundary conditions, June 17.

, Fictitious domain method for the Signorini problem in a linear elasticity, December 11.
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E.Y. KHRUSLOV, National Academy of Sciences of Ukraine, B. Verkin Institute for Low
Temperature Physics and Engineering, Kharkov, Homogenized models of complex fluids, June 4.

A. KIEU, University of Twente, Faculty of Mathematical Sciences, The Netherlands, The
forwards interest rate is driven by stochastic string, May 6.

P. KNOBLOCH, Charles University, Institute of Numerical Mathematics, Prague, Czech Repub-
lic, On Korn’s first inequality for nonconforming finite elements, September 18.

N. KORNEYEV, Humboldt-Universität zu Berlin, Institut für Physik, Bifurcations of a laser by
short-delay optical feedback: Simulation calculations with LDSL, May 15.

YU.A. KRAVTSOV, Maritime University of Szczecin, Institute of Mathematics, Physics and
Chemistry, Poland, Concept of partial predictability: An inverse problem of chaotic dynamics,
February 20.

P. KREJČÍ, Academy of Sciences of the Czech Republic, Institute of Mathematics, Prague,
Evolutionsgleichungen mit nichtinvertierbaren Operatoren, November 5.

A. KRENER, University of California, Department of Mathematics, Davis, USA, Control
bifurcations, June 12.

S. LANGDON, Brunel University, Department of Mathematical Sciences, Uxbridge, UK,
A wavenumber independent boundary element method for an acoustic scattering problem,
May 13.

A. LINKE, DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (FZT 86), Berlin,
3D-FEM-Simulation des Floating-Zone-Kristallzüchtungsverfahrens (Konvektion, freie Ober-
fläche), part 1, September 18.

, 3D-FEM-Simulation des Floating-Zone-Kristallzüchtungsverfahrens (Konvektion, freie
Oberfläche), part 2, September 25.

, Einführendes Tutorial: Templates und Scientific Computing, December 11.

D. LUSS, University of Houston, Department of Chemical Engineering, USA, Evolution and
motion of hot zones in catalytic packed bed-reactors, June 24.

N. MARKOVITCH, Russian Academy of Sciences, Institute of Control Sciences, Moscow,
Nonparametric estimation of the renewal function by empirical data, December 3.

A. MATOUSSI, Université du Maine, Equipe Statistiques et Processus, Département de Mathé-
matiques, Le Mans, France, Maximum principle for parabolic SPDEs, November 5.

G. MATTHIES, Otto-von-Guericke-Universität Magdeburg, Institut für Analysis und Numerik,
Numerische Simulation des Verhaltens von magnetischen Flüssigkeiten, February 13.

K. MATTHIES, Freie Universität Berlin, Institut für Mathematik, Atomic-scale localization of
lattice waves, July 8.

V.G. MAZ’YA, Linköping University, Department of Mathematics, Sweden, New criteria in the
spectral theory of the Schrödinger operator, September 25.
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J. MEHNERT, Universität Freiburg, Institut für Angewandte Mathematik, Fehlerabschätzungen
für die Navier-Stokes-Gleichungen mit freiem Kapillarrand, July 17.

F. MEIER, Universität Stuttgart, Institut für Chemische Verfahrenstechnik, Experimentelle
Analyse des Betriebsverhaltens von Direktmethanol-Brennstoffzellen (DMFC), January 23.

P. MORIN, Universidad Nacional del Litoral, Departamento de Matemática, Santa Fe, Argentina,
Finite element methods for surface diffusion, December 18.

T. MOUNTFORD, Ecole Polytechnique Fédérale de Lausanne, Département de Mathématiques,
Switzerland, The existence of a sharp interface for the one-dimensional voter model, Decem-
ber 3.

L. MYTNIK, Technion Haifa, Israel, Regularity and irregularity of the exit measure densities
for (1+beta)-stable super-Brownian motions, July 2.

N. NATARAJ, Indian Institute of Technology, Bombay, India, On a mixed finite element method
for IV order elliptic source/eigenvalue problems, October 30.

N.N. NEFEDOV, Moscow State University, Faculty of Physics, Russia, Multidimensional
internal layers in singularly perturbed reaction diffusion systems, October 21.

, Multidimensional internal layers of spike type, October 28.

R. NOVA, Politecnico di Milano, Facoltà di Ingegneria di Milano — Leonardo, Italy, The role
of non-normality in soil mechanics, May 5.

J. OSTROWSKI, ABB Baden, Switzerland, FEM/BEM-gekoppelte Simulation des induktiven
Härtens, November 20.

J. OUTRATA, Academy of Sciences of the Czech Republic, Institute of Information Theory and
Automation, Prague, On modeling and optimization of delamination processes, November 14.

C. PENSSEL, Universität Erlangen-Nürnberg, Mathematisches Institut, Catalytic interacting
Feller diffusion: Renormalisation and duality, April 23.

S.V. PEREVERZEV, National Academy of Sciences of Ukraine, Institute of Mathematics, Kiev,
General approach to the regularization parameter choice, February 4.

S.V. PEREVERZEV, Johann Radon Institute for Computational and Applied Mathematics, Linz,
Austria, General approach to the regularization in Hilbert spaces, December 1.

H.J. PESCH, Universität Bayreuth, Lehrstuhl für Ingenieurmathematik, Numerische Simulation
einer Schmelzkarbonat-Brennstoffzelle und ihre Steuerung, March 13.

T. PFINGSTEN, Westfälische Wilhelms-Universität Münster, Institut für Festkörpertheorie,
Ladungsträgerdynamik in optisch angeregten Halbleitern: Relaxation und Transport, May 7.

W. POLONIK, University of California, Department of Statistics, Davis, USA, Nonparametric
inference for multivariate volatility functions using concentration ideas and inverse regression,
May 14.
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M. PRÄHOFER, Technische Universität München, Zentrum Mathematik, M5, Fluctuations in
one-dimensional stochastic growth, November 12.

J.-H. PYO, Purdue University, Department of Mathematics, West Lafayette, Indiana, USA, A
finite element Gauge-Uzawa method for the evolution Navier-Stokes equations, June 5.

A. QUARTERONI, Ecole Polytechnique Fédérale de Lausanne, Institute of Mathematics and
Bernoulli Institute, Switzerland, WIAS/FZT 86 SPECIAL GUEST LECTURE: Modelling cardio-
vascular flows: Mathematical and numerical aspects, September 23.

, WIAS/FZT 86 SPECIAL GUEST LECTURE: Modelling cardiovascular flows: Numerical
simulations and clinical applications, September 24.

, WIAS/FZT 86 SPECIAL GUEST LECTURE: Domain decomposition methods for multi-
physics, October 1.

, WIAS/FZT 86 SPECIAL GUEST LECTURE: Numerical simulation for the America’s cup,
October 2.

E. RADKEVICH, Moscow State University, Faculty of Mechanics and Mathematics, Russia, On
asymptotic stability of hyperbolic pencils, February 19.

M. RASP, SiCrystal AG, Erlangen, Siliziumkarbid-Einkristallzüchtung im industriellen Maßstab,
June 23.

L. RECKE, Humboldt-Universität zu Berlin, Institut für Mathematik, Generic properties of
initial boundary value problems with non-smooth data, June 3.

W. REHBEIN, Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, Berlin, Ex-
periments on 40 GHz mode-locked lasers, June 12.

K. RICHAU, GKSS-Forschungszentrum, Institut für Chemie, Teltow-Seehof, Conditioning,
conductivity and permselectivity of free standing polymer membranes developed for DMFC
applications, January 23.

Y. ROGOVCHENKO, Eastern Mediterranean University, Department of Mathematics, Famagusta,
Northern Cyprus, Asymptotically linear solutions of nonlinear differential equations, August 21.

A. SAMOILENKO, National Academy of Sciences of Ukraine, Institute of Mathematics, Kiev,
Some problems of the theory of differential-delay equations, May 23.

E. SANGER, Freie Universität Berlin, Institut für Geologische Wissenschaften, Numerical rock
physics of 2d and 3d fractured media, March 19.

A. SCHEEL, University of Minnesota, School of Mathematics, Minneapolis, USA, Beyond the
Gap Lemma — blowup in critical eigenvalue problems, July 1.

R. SELLGER, ThyssenKrupp AG, Duisburg, Modellierung der Phasenumwandlung in Kohlen-
stoffstählen, February 24.

S. SHAPIRO, Freie Universität Berlin, Institut für Geologische Wissenschaften, Seismic diffusion
and propagating waves in rocks under stress, March 19.
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E. SHCHEPAKINA, Samara State University, Department of Differential Equations & Control
Theory, Russia, Maximal temperature of save combustion in case of an autocatalytic reaction,
November 13.

Z. SHI, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités et Modèles
Aléatoires, France, The most visited sites of one-dimensional simple random walk, July 16.

L. SHILNIKOV, Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, Russia,
Homokline Orbits zu Gleichgewichtspunkten vom Sattel-Fokus-Typ, November 6.

J. SIEBER, University of Bristol, Department of Engineering Mathematics, UK, Delay-
differential equations: Basic theory for center manifold reduction, September 25.

H. SILVA, GKSS-Forschungszentrum, Institut für Chemie, Geesthacht, Membrane development
for the DMFC—characterisation and modelling, November 27.

D. SKRYABIN, University of Bath, Department of Physics, UK, Radiation and scattering of
linear waves and solitons in photonic crystal fibers, December 4.

I.V. SKRYPNIK, National Academy of Sciences of Ukraine, Institute of Applied Mathematics
and Mechanics, Donetsk, Removable singularities of nonlinear elliptic equations, July 16.

A.L. SKUBACHEWSKII, University of Aerospace Technology, Moscow Aviation Institute,
Russia, Multidimensional nonlocal elliptic problems and applications, November 24.

D.M.J. SMEULDERS, Delft University of Technology, Department of Applied Earth Sci-
ences, The Netherlands, Shock-induced wave propagation in (nn)saturated poroelastic media,
February 21.

I. STEINBACH, Access e.V., Aachen, Transientes Wachstum und Wechselwirkung äquiaxialer
Dendriten: Ein Mehrskalenansatz, February 10.

D. TASCHE, Deutsche Bundesbank, Banking Supervision/Research, Frankfurt am Main, Kapi-
talallokation für Kreditportfolios, March 31.

M. THIEULLEN, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités
et Modèles Aléatoires, France, An integration by parts formula for the bridges of diffusion
processes, January 29.

A. TSYBAKOV, Université Paris VI “Pierre et Marie Curie”, Laboratoire de Probabilités et
Modèles Aléatoires, France, Optimal rates of aggregation, July 9.

O. USHAKOV, Humboldt-Universität zu Berlin, Experimentelle Physik, Bifurcations of a laser
by short-delay optical feedback: Experimental investigations, May 15.

V. VATUTIN, Steklov Mathematical Institute, Moscow, Russia, Branching processes in a critical
random environment, November 19.

M. WEINERT, Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, Berlin, Pulse
propagation in nonlinear fibers, January 16.
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S. WIELAND, Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Numerische Si-
mulation, Modellierung und mathematische Analyse kontaminierter dünner Flüssigkeitsfilme,
December 17.

T. WILHELM, Institut für molekulare Biotechnologie, Jena, Statistische Analyse und dynamische
Simulation zellulärer Netzwerke, January 24.

A.G. YAGOLA, Moscow State University, Department of Mathematics, Russia, Using a priori
information for constructing regularizing algorithms, September 9.

M. YAMAMOTO, University of Tokyo, Department of Mathematical Sciences, Japan, Carleman
estimate for hyperbolic equations with variable coefficients and its application to inverse
problems, June 5.

, Moment method for the Cauchy problem of the Laplace equation, September 23.

E. ZIENICKE, Technische Universität Ilmenau, Fakultät Maschinenbau, A shallow water model
for the liquid metal pinch, May 15.

H. ZORSKI, Polish Academy of Sciences, Institute of Fundamental Research, Warsaw, Gibbs
distributions with temperature dependent Hamiltonians, November 19.

S. ZWANZIG, Uppsala University, Department of Mathematics, Sweden, On saddlepoint
approximations in regression models, June 25.
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6.11 Membership in Organizing Committees of non-WIAS Meetings

E. BÄNSCH, member of the Local Organizing Committee, 15th International Conference on
Domain Decomposition Methods, Freie Universität Berlin, July 21–25.

A. BOVIER, member of the Organizing Committee, Workshop “Mathematics of Random Spatial
Models from Physics and Biology”, Universität Bielefeld, October 13–14.

H. GAJEWSKI, member of the Program Committee, International Conference “Nonlinear
Partial Differential Equations”, Alushta, Ukraine, September 15–20.

, member of the Scientific Committee, Numerical Simulation of Semiconductor Optoelec-
tronic Devices (NUSOD ’03), Tokyo, Japan, October 13–16.

R. HENRION, organizer, Mini-Workshop “Risikomaße und ihre Anwendungen”, Humboldt-
Universität zu Berlin, December 1.

D. HÖMBERG, organizer of a minisymposium, 5th International Congress on Industrial and
Applied Mathematics (ICIAM 2003), Sydney, Australia, July 7–11.

D. MERCURIO, member of the Organizing Committee, The Art of Semiparametrics, Humboldt-
Universität zu Berlin, October 18–20.

V. SPOKOINY, member of the Organizing Committee, The Art of Semiparametrics, Humboldt-
Universität zu Berlin, October 18–20.

J. SPREKELS, member of the Local Organizing Committee, 15th International Conference on
Domain Decomposition Methods, Freie Universität Berlin, July 21–25.

, member of the Scientific Committee, Conference on Nonlinear Partial Differential
Equations and Their Applications, Fudan University, Shanghai, China, November 23–27.

W. WAGNER, member of the Organizing Committee, Euroworkshop “Stochastic Methods in
Coagulation and Fragmentation”, Cambridge, UK, December 8–12.
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6.12 Software

AWS (contact: J. Polzehl, phone: +49 30/20372-481)
AWS is an Adaptive Weights Smoothing package. A reference implementation of the adaptive
weights smoothing procedures (AWS) is available in form of a contributed package of the
R-Project for Statistical Computing (http://www.r-project.org/). The package includes functions
for local polynomial structural adaptive smoothing in regression models with additive errors
and for local constant structural adaptive smoothing in exponential family models, the latter
including binary response, Poisson regression, exponential regression, and volatility models.
The special case of a grid design allows for efficient reconstruction of non-smooth images in
2D and 3D.
The package can be obtained from http://CRAN.R-project.org/.
An extension of this package currently allows for multivariate models and contains functions
for the analysis of fMRI and dMRI data.

BOP (contact: J. Borchardt, phone: +49 30/20372-485)
The simulator BOP (Block Orientend Process simulator) is a software package for large-scale
process simulation. It allows to solve dynamic as well as steady-state problems. Due to an
equation-based approach, a wide range of processes as they occur in chemical process industries
or other process engineering environments can be simulated.
The modeling language of BOP is a high-level language which supports a hierarchically unit-
oriented description of the process model and enables a simulation concept that is based on
a divide-and-conquer strategy. Exploiting this hierarchical modeling structure, the generated
system of coupled differential and algebraic equations (DAEs) is partitioned into blocks, which
can be treated almost concurrently. The used numerical methods are especially adopted for
solving large-scale problems on parallel computers. They include backward differentiation
formulae (BDF), block-structured Newton-type methods, and sparse matrix techniques.
BOP is implemented under UNIX on parallel computers with shared memory (Cray J90, SGI
Origin2000, Compaq AlphaServer) but can also be run on different single processor machines
as well as under Windows XP on PCs. So far it has been successfully used for the simulation
of several real-life processes in heat-integrated distillation, sewage sludge combustion or gas
turbine simulation for example.
Detailed information: http://www.wias-berlin.de/software/BOP

ClusCorr98 (contact: H.-J. Mucha, phone: +49 30/20372-573)
The statistical software ClusCorr98 is an interactive statistical computing environment
that performs exploratory data analysis mainly by using adaptive methods of cluster analysis,
classification, and multivariate visualization. Currently, there are two new main enhancements.
Firstly, an automatic validation technique of cluster analysis results was developed that becomes
a general built-in validation tool for all hierarchical clustering methods that are available in the
statistical software ClusCorr98. This validation via resampling techniques is based on the
adjusted Rand index. By doing so, both the appropriate number of clusters can be validated and
the stability of each cluster can be assessed. Furthermore, one can compare the performance of
different cluster analysis methods. Secondly, clustering methods based on nonparametric density
estimation are under development. This is a joint project with U. Simon and C. Duckhorn within
the framework of an application to water ecology (monitoring of phytoplankton). The special

http://www.r-project.org/
http://CRAN.R-project.org/
http://www.wias-berlin.de/software/BOP
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algorithms can find arbitrary-shaped clusters. Usually, they are used as a fast preclustering step
for massive data sets or as stand-alone clustering methods that provide optimum solutions.
Up to now ClusCorr98 runs under the Excel spreadsheet environment taking advantage of
both the data base connectivity and the object-oriented programming language Visual Basic for
Applications (VBA). Now the upgrade of VBA to C# and VB.NET under the .NET framework
is in progress.
Please find further information under: http://www.wias-berlin.de/software/ClusCorr98 and
http://www.wias-berlin.de/people/mucha/Clustering.

DiPoG (contact: G. Schmidt, phone: +49 30/20372-456)
The program package DiPoG (Direct and inverse Problems for optical Gratings) provides
simulation and optimization of periodic diffractive structures with multilayer stacks.
The direct solver computes the field distributions and efficiencies of given gratings for TE and
TM polarization as well as under conical mounting for arbitrary polygonal surface profiles.
The inverse solver deals with the optimal design of binary gratings, realizing given optical
functions, for example, far-field patterns, efficiency, or phase profiles. The algorithms are based
on coupled generalized finite/boundary elements and gradient-type optimization methods.
For detailed information please see also http://www.wias-berlin.de/software/DIPOG.

gltools (contact: J. Fuhrmann, phone: +49 30/20372-560)
gltools has been designed with the needs of numerical analysts in mind. Thus, unlike
many other packages available, it can be used to enhance existing codes with interactive or
non-interactive graphical output. It enhances the OpenGL API with the following additional
functionality:

– multiple independent windows;
– basic interactive handling through mouse and keyboard;
– interactive three-dimensional rendering volume;
– character output;
– high-quality frame dump in encapsulated postscript format;
– MPEG video recording of window contents;
– piecewise linear function rendering on two- and three-dimensional simplex meshes

(landscape view of plane sections, isolevel surfaces, isolines) with an
– universal, callback-based mesh interface.

Please find further information under http://www.wias-berlin.de/software/gltools.

LDSL-tool (contact: M. Radziunas, phone: +49 30/20372-441)
LDSL-tool (Longitudinal Dynamics in Semiconductor Lasers) is a tool for the simulation
and analysis of the nonlinear longitudinal dynamics in multi-section semiconductor lasers. This
software is used to investigate and to design lasers which exhibit various nonlinear effects such
as self-pulsations, chaos, hysteresis, mode switching, excitability, and synchronization to an
external signal frequency.
LDSL-tool combines models of different complexity, ranging from partial differential equation
(PDE) to ordinary differential equation (ODE) systems. A mode analysis of the PDE system
and a comparison of the different models is also possible.
Detailed information: http://www.wias-berlin.de/software/ldsl

http://www.wias-berlin.de/software/ClusCorr98
http://www.wias-berlin.de/people/mucha/Clustering
http://www.wias-berlin.de/software/DIPOG
http://www.wias-berlin.de/software/gltools
http://www.wias-berlin.de/software/ldsl
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pdelib (contact: J. Fuhrmann, phone: +49 30/20372-560)
pdelib is a collection of software components which are useful to create simulators based
on partial differential equations. The main idea of the package is modularity, based on a
pattern-oriented bottom-up design. Among others, it provides libraries for

– iterative solvers;
– sparse matrix structures with preconditioners and direct solver interfaces;
– simplex grid handling;
– graphical output using gltools and OpenGL;
– user interface based on the scripting language Lua.

Further, based on the finite volume implicit Euler method, a solver for systems of nonlinear
reaction-diffusion-convection equations in heterogeneous one-, two-, and three-dimensional
domains has been implemented which is part of the package.
For more information please see also http://www.wias-berlin.de/software/pdelib.

WIAS-HiTNIHS (contact: P. Philip, phone: +49 30/20372-480)
The WIAS-High Temperature Numerical Induction Heating Simulator constitutes a transient
simulation tool for the temperature evolution in axisymmetric technical systems that are subject
to intense heating by induction. The simulator accounts for heat transfer by radiation through
cavities, and it allows for changes in the material parameters due to the rising temperature, e.g.,
employing temperature-dependent laws of thermal and electrical conductivity. The simulator
is designed to deal with complicated axisymmetric setups having a polygonal 2D projection.
The induction coil is allowed to move during the simulation. The software is based on the
WIAS program package pdelib for the numerical solution of partial differential equations.
WIAS-HiTNIHS has been and is further developed within the project “Numerical simulation
and optimization of SiC single crystal growth by sublimation from the gas phase” (see p. 40)
supported by the BMBF and the DFG.
Please find further information under http://www.wias-berlin.de/software/hitnihs.

WIAS-SHarP (contact: D. Hömberg, phone: +49 30/20372-491)
Based on pdelib, WIAS-SHarP (Surface Hardening Program) is a software for the simulation
of electron and laser beam surface hardening. It contains a data bank with material parameters
for 20 important steels as well as routines to describe the phase transition kinetics during
one heat treatment cycle. Moreover, it allows for quite general radiation flux profiles and the
implementation of two independent beam traces. To facilitate its usage, a Java-based GUI has
been developed.
For more information see http://www.wias-berlin.de/software/sharp.

WIAS-TeSCA (contact: R. Nürnberg, phone: +49 30/20372-570)
WIAS-TeSCA is a Two- and three-dimensional Semi-Conductor Analysis package. It serves
to simulate numerically the charge carrier transport in semiconductor devices based upon the
drift-diffusion model. This van Roosbroeck system is augmented by a vast variety of additional
physical phenomena playing a role in the operation of specialized semiconductor devices, as,
e.g., the influence of magnetic fields, optical radiation, temperature, or the kinetics of deep
(trapped) impurities.

http://www.wias-berlin.de/software/pdelib
http://www.wias-berlin.de/software/hitnihs
http://www.wias-berlin.de/software/sharp
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The strategy of WIAS-TeSCA for solving the resulting highly nonlinear system of partial
differential equations is oriented towards the Lyapunov structure of the system which describes
the currents of electrons and holes within the device. Thus, efficient numerical procedures, for
both the stationary and the transient simulation, have been implemented, the spatial structure
of which is a finite volume method. The underlying finite element discretization allows the
simulation of arbitrarily shaped two-dimensional device structures.
WIAS-TeSCA has been successfully used in the research and development of semiconductor
devices such as transistors, diodes, sensors, detectors, and lasers.
The semiconductor device simulation package WIAS-TeSCA operates in a UNIX environment
and is available for a variety of configurations as, e.g., SUN, COMPAQ, HP, SGI, but also for
Linux PC.
For more information please look up:http://www.wias-berlin.de/software/tesca.

WIAS-QW (contact: U. Bandelow, phone: +49 30/20372-471)
WIAS-QW is a numerical code for the simulation of strained multi-quantum-well structures.
Based upon multiband kp models it allows to treat band mixing effects, confinement effects,
crystal symmetry, and the influence of mechanical strain.
In particular, WIAS-QW calculates the

– subband dispersion;
– eigenfunctions;
– transition matrix elements;
– miniband effects in multi-quantum-well structures.

In dependence on the sheet carrier densities and the temperature, WIAS-QW calculates the

– optical response function;
– gain spectrum;
– radiative recombination rate;
– carrier density distributions.

Furthermore, the calculations can be done selfconsistently, comprising pure kp calculations,
but also calculations which include the Hartree–Coulomb potential, obtained from Poisson’s
equation, as well as density-dependent exchange-correlation potentials, which account for the
bandgap-shift—one of the most prominent many-particle effects.
Please find further information under http://www.wias-berlin.de/software/qw.

http://www.wias-berlin.de/software/tesca
http://www.wias-berlin.de/software/qw
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6.13 Grants

Bundesministerium für Bildung und Forschung (Federal Ministry of Education and
Research), Bonn

• Neue Mathematische Verfahren in Industrie und Dienstleistungen (New mathematical
methods in industry and services)

“Optoelektronische Sensoren” (Optoelectronic sensors, FG1 1)

“Numerische Simulation und Optimierung der Züchtung von SiC-Einkristallen durch
Sublimation aus der Gasphase” (Numerical simulation and optimization of SiC single
crystal growth by sublimation from the gas phase, FG 1, 7)

“Mathematische Modellierung und Simulation der Entstehung, des Wachstums und der
Auflösung von Arsenausscheidungen in einkristallinem Galliumarsenid” (Mathematical
modeling and simulation of the formation, growth, and dissolution of arsenic precipitation
in single crystal gallium arsenide, FG 7)

“Modellierung und Optimierung mikrooptischer Oberflächenstrukturen” (Modeling and
optimization of microoptic surface structures, FG 4)

“Effiziente Methoden zur Bestimmung von Risikomaßen” (Efficient methods for valuation
of risk measures, FG 6)

• Technische Anwendungen der Nichtlinearen Dynamik (Technical applications in
nonlinear dynamics)

“Hochfrequente Selbstpulsation in Mehrsektions-Halbleiterlasern: Analysis, Simulation
und Optimierung” (High frequency self-pulsations in multi-section semiconductor lasers:
Analysis, simulations, and optimization, FG 2)

• COMPERE (BMBF-DLR: Treibstoffverhalten in Tanks von Raumtransportsystemen —
Comportement des Ergols dans les Réservoirs, FG 3)

Deutsche Forschungsgemeinschaft (German research association), Bonn

• DFG-Forschungszentrum 86 “Mathematik für Schlüsseltechnologien” (DFG Re-
search Center 86 “Mathematics for Key Technologies”), Technische Universität Berlin

A3: “Image and signal processing in medicine and biosciences” (FG 6)

C1: “Coupled systems of reaction-diffusion equations and application to the numerical
solution of direct methanol fuel cell (DMFC) problems” (FG 3)

C2: “Efficient simulation of flows in semiconductor melts” (FG 3)

C7: “Mean-risk models for electricity portfolio management and stochastic programming”
(FG 4)

C8: “Shape optimization and control of curved mechanical structures” (FG 1)

C9: “Optimal control of sublimation growth of SiC bulk single crystals” (FG 1)

C11: “Modeling and optimization of phase transitions in steel” (FG 3, 4)

1research group
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D3: “Global singular perturbations” (FG 2)

D4: “Quantum mechanical and macroscopic models for optoelectronic devices” (FG 1)

D8: “Nonlinear dynamical effects in integrated optoelectronic structures” (FG 1, 2)

E1: “Microscopic modelling of complex financial assets” (FG 5)

E5: “Statistical and numerical methods in modelling of financial derivatives and valuation
of portfolio risk” (FG 6)

• Collaborative Research Centre (Sfb) 373, Humboldt-Universität zu Berlin,
“Quantifikation und Simulation ökonomischer Prozesse” (Quantification and simulation
of economic processes)

B1 “Kurvenschätzung und Resampling” (Curve estimation and resampling methods, FG 6)

B2 “Stochastic models for financial markets and statistics of stochastic processes” (FG 6)

• Collaborative Research Centre (Sfb) 555, Humboldt-Universität zu Berlin,
“Komplexe Nichtlineare Prozesse. Analyse — Simulation — Steuerung — Optimierung”
(Complex non-linear processes. Analysis — simulation — control — optimization)

“Analytische und numerische Untersuchungen zur raum-zeitlichen Strukturbildung in
Halbleiterlasern” (Analytical and numerical study of the spatial and temporal pattern
formation in semiconductor lasers, FG 1, 2)

• Priority Program: “Halbleiterbauelemente hoher Leistung” (Semiconductor devices for
high power applications)

“Physikalische Modellierung und numerische Simulation von Strom- und Wärmetransport
bei hoher Trägerinjektion und hohen Temperaturen” (Physical modeling and numerical
simulation of current and heat transport at high carrier injection and high temperatures,
FG 1)

• Priority Program: “Interagierende Stochastische Systeme von hoher Komplexität” (Inter-
acting stochastic systems of high complexity)

“Intermittenz und katalytische Medien” (Intermittency and catalytic media, FG 5)

“Untersuchung von Tieftemperaturphasen ungeordneter Modelle mit langreichweitiger
Wechselwirkung” (Study of low temperature phases of disordered models with long-range
interaction, FG 5)

• Priority Program: “Analysis, Modellbildung und Simulation von Mehrskalenproblemen”
(Analysis, modeling and simulation of multiscale problems)

“Enveloppenfunktionsapproximation zur Beschreibung elektronischer Zustände in Halb-
leiter-Nanostrukturen” (Envelope function approximation of electronic states in semicon-
ductor nanostructures, FG 1, 3, 4)

“Mehrskalenmodellierung thermomechanischer Körper” (Multiscale models of thermo-
mechanical bodies, FG 1, 7)

“Mikro-Makro-Übergänge in der atomaren Kette für verschiedene Skalierungen” (Micro-
macro transitions in the atomic chain for various scalings, FG 1, 7)
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• Priority Program: “Mathematische Methoden der Zeitreihenanalyse und digitalen Bildver-
arbeitung” (Mathematical methods for time series analysis and digital image processing)

“Structural adaptive smoothing procedures with applications in imaging and functional
MRI” (FG 6)

• Priority Program “Analysis und Numerik von Erhaltungsgleichungen” (ANumE — Anal-
ysis and numerics for conservation laws)

“Kinetische Behandlung von ausgewählten Anfangs- und Randwertproblemen” (Kinetic
treatment of selected hyperbolic initial and boundary value problems, FG 7)

• Normalverfahren (Individual Grants)

“Hysterese-Operatoren in Phasenfeld-Gleichungen” (Hysteresis operators in phase-field
equations, FG 1)

“Kopplung von van Roosbroeck- und Schrödinger-Poisson-Systemen mit Ladungsträger-
austausch” (Coupling between van Roosbroek and Schrödinger-Poisson systems including
exchange of carriers, FG 1)

“Effektive Steuerung von stochastischen Partikelverfahren für Strömungen in verdünnten
Gasen” (Effective control of stochastic particle methods for rarefied gas flows, FG 5)

“Kinetische Lösungen für ausgewählte hyperbolische Anfangs- und Randwertprobleme”
(Kinetic solutions for selected hyperbolic initial and boundary value problems, FG 7)

• Graduate College, Technische Universität Berlin
“Stochastische Prozesse und Probabilistische Analysis” (Stochastic processes and proba-
bilistic analysis, FG 5, 6)

• Graduate College, Technische Universität Berlin
“Transportvorgänge an bewegten Phasengrenzflächen” (Transport phenomena with moving
boundaries, FG 3)

• Cooperation project “Singulär gestörte Systeme und Stabilitätswechsel” (Singularly per-
turbed systems and exchange of stability) of German and Russian scientists in the
framework of the Memorandum of Understanding between DFG and RFFI

• Scientific cooperation with Japan: “Inverse problems in electromagnetics and optics”
(FG 4)

• A part of the WIAS guest program was supported by DFG grants.

Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation)

• 1 Humboldt Laureate (FG 2) and 3 scholarship holders (FG 5, 7), see page 245

Deutscher Akademischer Austauschdienst (German Academic Exchange Service), Bonn

• 1 short-term fellowship (FG 2)

• PROCOPE (FG 1)
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International Projects

• (EU) INTAS: “Development of constructive and numerical methods for solving nonlocal
linear and nonlinear problems for partial differential equations” (FG 4)

• (EU) INTAS: “Random walk models for the footprint problem in the turbulent atmos-
phere” (FG 5, 6)

• (EU) INTAS: “Young NIS Scientist Fellowship Programme” (FG 2)

• NATO Linkage Grant: “Stochastic and computational models of transport in porous
media” (FG 6)

• ESF (European Science Foundation) Programme “Phase transitions and fluctuation phe-
nomena for random dynamics in spatially extended systems” (FG 5)

• The head of Research Group 5 is a member of the Bilateral Research Group “Mathe-
matics of random spatial models from physics and biology” (DFG/NWO (Netherlands
Organization for Scientific Research))

Stiftung Industrieforschung (foundation for industrial research)

• “Numerische Simulation von Temperaturfeldern bei der Strahlbearbeitung von kompliziert
geformten Bauteilen” (Numerical simulation of temperature fields during beam hardening
of workpieces with complicated shapes, FG 1)

Verbundforschungsvorhaben (research network project): “Terabit Optics Berlin”

• B4: “Modellierung und Simulation von Pulsquellen” (Modeling and simulation of pulse
sources, FG 1, 2)

Mission-oriented research

• ALSTOM (Switzerland) Ltd., Baden: “Prozesssimulation bei Kraftwerksanlagen” (Power
plant process simulation, FG 3)

• Bundesanstalt für Materialforschung und -prüfung, Berlin: “Statistisch-methodische Ver-
fahrensentwicklung zur Zertifizierung von Referenzmaterialien” (Statistical methods for
certification of reference materials, FG 6)

• Carl Zeiss, Oberkochen: Verbundprojekt/Collaborative project HYBROS (Grundlegende
Untersuchungen zu Design und Realisierung neuartiger hybrider Optik-Systeme — basic
research into design and implementation of novel hybrid optics systems, FG 4)

• Freiberger Compound Materials GmbH: “Spannungs- und Dehnungsanalyse an GaAs-
Waferplatten” (Stress and strain analysis of GaAs wafer plates, FG 7)

• LUMICS GMBH Berlin: “WIAS-TeSCA simulations of laser diodes” (FG 1)

• Reuters Financial Software Paris: Consulting contract (FG 6)

• Rücker Ges.m.b.H, Graz, Austria: “Bahnplanung für Industrieroboter und Menschmo-
delle” (Path planning for robots and human models, FG 4)
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